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Provenance-based validation of e-science experiments
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bstract

E-science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed,
t is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards,
ot necessarily anticipated prior to execution. Scientists may also want to review and verify experiments performed by their colleagues. There are
o existing frameworks for validating such experiments in today’s e-science systems. Users therefore have to rely on error checking performed

y the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions.
he validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a

egistry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested
n a bioinformatics application that performs protein compressibility analysis.
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. Introduction

Very large scale computations are now becoming rou-
inely used as a methodology to undertake scientific research:
uccess stories abound in many domains, including physics
griphyn.org), bioinformatics (mygrid.org.uk), engineering
geodise.org) and geographical sciences (earthsystemgrid.org).
hese large scale computations, which underpin a scientific pro-
ess usually referred to as e-science, are ideal candidates for use
f Grid technology [8].

E-science experiments are typically formed by invoking mul-
iple services, whose compositions are modelled as workflows
9]. Thus, experimental results are obtained by executing work-
ows. As part of the scientific process, it is important for
cientists to be able to verify the correctness of their own

xperiments, or to review the correctness of their peers’ work.
alidation ensures results generated from experiments are mean-

ngful.

∗ Corresponding author. Tel.: +44 23 8059 8309.
E-mail addresses: sm@ecs.soton.ac.uk (S. Miles), sw2@ecs.soton.ac.uk
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Traditionally, program validation has been carried out in
wo complementary manners. On the one hand, static ver-
fication analyses program code or a workflow before it
s executed and establishes that the program/workflow sat-
sfies some properties. These verifications are extensively
esearched by the programming language community. Exam-
les include type inference, escape analysis and model checking.
hey typically depend on the semantics of the program-
ing language being analysed. On the other hand, static

erification is complemented by run-time checking, which
s carried out when the program executes, and verifies that
ata values satisfy constraints, expressed by either types or
ssertions.

Such validation methods suffer from limitations when work-
ows are executed in dynamic open environments. First,
rograms (or workflows) may not be expressed in languages
hat analysis tools operate on, or may not be directly available
ecause they are exposed as services, hereby preventing static
nalysis. Second, in general, in open environments, we can-
ot make the assumption that services always check that their

nputs or outputs match their interface specifications (if avail-
ble at all); furthermore, such interfaces may be under-specified
for instance, many bioinformatics services tend to process and
eturn strings encoding specific biological sequence data); as a
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esult, no guarantee exists that specific, domain-level types will
e checked dynamically.

A new, more specific limitation comes from the evolving
onduct of e-science. Studies of user practice have shown that
apid development cycles are being adopted by e-scientists,
n which workflows are frequently modified and tuned and
cientific models are evolved accordingly. As a result, it is
mportant for scientists to be able to verify that previous
xperimental results are compatible with recent criteria, mod-
ls and requirements. Since these models did not necessarily
xist at experiment design or execution time, it is a neces-
ity to perform such validation after the experiment has been
ompleted.

The provenance of a piece of data denotes the process by
hich it is produced. Provenance-aware applications are appli-

ations that record documentation of their execution so that the
rovenance of the data they produce can be obtained and rea-
oned over. We have studied a range of e-science application
omains and established that they have a range of requirements
or provenance-awareness [15]. In the former requirements
tudy, many examples of experiment validation were discovered
nd in varying domains. For example, in a distributed parti-
le physics experiment, there was a requirement to verify that
hose library versions used to analyse the experiment data were
ot ones known to contain bugs. In partially lab-based biology
nd chemistry experiments, requirements for validation included
hecking that health and safety rules had been followed by exper-
ments in the past month. In a more general, computer-science
entred example [25], processes can be validated to ensure, for
ault tolerance, that multiple services assumed to be independent
id not actually depend on the same, possibly faulty, service.
e refer the reader to the survey for the full range of such use

ases.
In this paper, our thesis is that provenance-based validation

f experiments allows us to verify their validity after experi-
ents have been conducted. Specifically, our contributions are:

a) a provenance-based architecture to undertake validation of
xperiments; (b) the use of semantic reasoning in undertaking
alidation of experiments; (c) an implementation of the archi-
ecture and its deployment in a bioinformatics application in
rder to support a set of use cases. Our experimentation with
he system shows that our approach is tractable and performs
fficiently.

The structure of the paper is as follows. Section 2 describes
ome use cases we have identified that require experiment valida-
ion. Section 3 briefly discusses current approaches to e-science
xperiment validation and explains why it is necessary to per-
orm validation after an experiment was executed. Section 4
ntroduces the proposed framework for validation of workflow
xecution. Section 5 then describes how the architecture can
e applied to the use cases introduced in Section 2. In Section
, we discuss how semantic reasoning is essential in properly
stablishing the validity of experiments. Section 7 then presents

esults from an implementation of the validation framework with
n e-science application (specifically, the protein compressibil-
ty analysis experiment). The paper finishes with discussion in
ection 8 and conclusions in Section 9.
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. Use cases

The motivation for this work comes from real problems found
y scientists in their day-to-day work. Therefore, in this sec-
ion, we introduce a number of use cases in the bioinformatics
omain where it is necessary to perform some form of validation
f experiments after they have been completed. As identified in
he use cases below, while service-based validation can only
e performed at run-time, it is sometimes necessary to validate
n experiment after it has been executed. Third parties, such
s reviewers and other scientists, may want to verify that the
esults obtained were computed correctly according to some cri-
eria. These criteria may not be known when the experiment was
esigned, because criteria evolve as science progresses. Thus,
t is important that previously computed results can be verified
ccording to revised sets of criteria.

se Case 1 ((Interaction validity, interface level)). A biologist,
, performs an experiment on a protein sequence. One stage
f this experiment involves generating a pre-specified number
f permutations of that sequence. Later, another biologist, R,
udges the experiment results and considers them to be suspi-
ious. R determines that the number of permutations specified
as an invalid value, e.g. it was negative.

In this example, we consider that the service provider could
ave specified a restriction for the number of permutations to
on-negative integers in the service schema, since the parameter
nly makes sense for non-negative integers. However, this does
ot guarantee that the service will validate the data against the
chema at run-time. In general, whether validation is carried out
t run-time is service specific.

In Use Case 1, B could have entered a negative value for
he number of permutations. In this case, the value is incorrect
ecause it does not conform to the restrictions and requirements
s specified by the interface document of the service. By validat-
ng the experiment using its provenance, R can determine that B
ntered an invalid value for the number of permutations, and thus
he results generated by the experiment were not meaningful.

se Case 2 ((Interaction validity, domain-level)). A bioinfor-
atician, B, downloads a file containing sequence data from a

emote database. B then processes the sequence using an anal-
sis service. Later, a reviewer, R, suspects that the sequence
ay have been a nucleotide sequence but processed by a ser-

ice that can only analyse meaningfully amino acid sequences.
determines whether this was the case.

Nucleotides and amino acids are two separate classes of
iological sequences, but the symbols used in the syntax of
ucleotides are a subset of those used for amino acids. There-
ore, it is not always possible to detect which type of sequence
s used by superficially examining the data. The service used in
se Case 2 could require an amino acid sequence as its input. If a
ucleotide sequence was accidentally used rather than an amino

cid sequence, the problem would not be detected at run-time,
nd the experiment results would not be meaningful.

Given that many bioinformatics services operate on strings,
he biological interpretation of a piece of data is information



n
b
d
m
c
i
p

U
f
d
o
a
c

k
o
[
w
a

3
t
s
a
c
t
i
s
a
v
t
t
i
w

U
p
a
t
d
f

v
R
i
i
v
o

U
f
r
l

t
(

p
i
r
a
m
T
p
g
a
c
o

f
i
c
a
i

3

s
t
a
t
w
[

w
o
w
O
o
e
e
t
w
s
t
f
t
p
t

v
w
b
w
a
t
a
c
W

ot directly available from interface specification, and cannot
e easily derived from the data itself. Typically, such additional
escription that is useful or of interest to the user has to be
ade explicit elsewhere. Thus, the interaction in an experiment

an be correct according to service interface specifications, but
ncorrect according to the domain-level understanding of the
roblem.

se Case 3 ((Ontology revision)). A bioinformatician, B, per-
orms an experiment on a sequence downloaded from a remote
atabase. Later, another bioinformatician, D, updates the ontol-
gy that classifies sequences stored in the database to correct
n error in the previous version. B checks if the experiment is
ompatible with the new version of the ontology.

Ontologies are invaluable in describing domain-specific
nowledge, such as that DNA and RNA sequences are subtypes
f nucleotide sequences, as illustrated by the Gene Ontology
24]. If a service advertises that it accepts nucleotide sequences,
e can infer that the service can also meaningfully process DNA

nd RNA sequences.
Similar to Use Case 2, the bioinformatician B in Use Case

wants to validate the interactions in the experiment according
o their domain-level characterisation (specifically, biological
equence types). Therefore, to ensure results of the experiment
re not affected by this error in the ontology, B validates the exe-
ution against the revised ontology. For instance, if at the time
hat the experiment was performed, the ontology erroneously
ncluded an assertion that the class NucleotideSequence sub-
umed the class AminoAcidSequence, then a workflow using
service expecting nucleotide sequences would be determined
alid when applied to amino acid sequences. After correction,
he workflow can be seen to be no longer valid. The value, in
his case, of validation after experiments have taken place is that
nformation can be assumed to be as accurate as possible before
orkflow execution.

se Case 4 ((Conformance to plan)). A biologist, B, creates a
lan for an experiment by defining the type of analysis to perform
t each stage of the experiment. B then performs an experiment
hat is intended to follow the plan. Later another biologist, R,
etermines whether each operation performed in the experiment
ulfilled an intended operation in the plan.

In Use Case 4, the plan defined by B is abstract in nature. To
erify whether the experiment conformed to the original plan,
examines the tasks the services perform. In other words, R

s interested in verifying the properties of the services, not the
nteractions between the services. This is in contrast to the pre-
ious use cases, where the validation is performed on the types
f the data provided and accepted by the services.

se Case 5 ((Patentability of results)). A biologist, B, per-
orms an experiment. Later, B wishes to patent the results. A
eviewer, R, checks that no service used in the experiment has

egal restrictions such that the results could not be patented.

In Use Case 5, R is interested in attributes, such as condi-
ion of use, legal constraints and patents. These conditions are
probably) unforeseen by biologist B when they designed and
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erformed the experiment. In this case, it may not be a lack of
nformation available before workflow execution, but a lack of
equirement to validate that means validation will not occur. As
nother example, new scientific results published in the literature
ay introduce a doubt about the quality of part of a database.
he scientist may wish to ensure that the data they used in a
ast experiment, did not come or derive from this database. In
eneral, our approach helps the case where, for one reason or
nother, the biologist chooses not to validate or does not even
onsider validating the experiment before execution as, through
ur approach, the facility is readily available after execution.

This list of use cases is by no means exhaustive. We have
ocussed on forms of validation requiring minimal additional
nput from the validating user, and so do not address those con-
erning the scientific intent of the experiment. Other use cases
re made explicit elsewhere [15], some of which are examined
n other papers [10], while others remain for future work.

. Current validation approaches

Web Services are described by a WSDL interface [4] that
pecifies the operations they support, the inputs they expect, and
he outputs they produce. The inputs and outputs of an operation
re part of a message and their structure, referred to as interface
ype, is commonly specified using XML Schema [6]. In other
ords, it is the type expected by the transport layer (i.e. SOAP

17]).
In our approach, we allow anyone to augment interface types

ith further descriptions that characterise additional invariants
f interest to the user. For instance, in the previous section,
e discussed a characterisation of data in domain-level terms.
WL-S [14] allows for semantic types expressed using the OWL
ntology to be added to the service profile. Given that the world is
volving, we consider that several views about an object may co-
xist. Hence, it is permitted to associate several semantic types
o a given entity: this is the approach adopted by myGrid [28],
hich also relies on the OWL ontology language to give a clas-

ification of biological data. Such descriptions are not restricted
o inputs and outputs, but can be annotations to service inter-
aces that identify the functions they perform or the resources
hey rely upon. Such information may be provided by the service
rovider, or by a third party, and published in a registry, such as
he Grimoires registry [16].

In Section 1, we discussed two commonly used forms of
alidation: static and dynamic. Static validation operates on
orkflow source code. The vast array of static analyses devised
y the programming language community is also applicable to
orkflows, such as type inference, escape analysis, etc. Some

nalysis were conceived to address problems that are specific
o workflows. Examples of these include workflow concurrency
nalysis [13], graph-based partitioning of workflows [1], model
hecking of activity graphs [5] and checking the protocols of
eb Service composition by multi-agent systems [27].

Validation may also be performed at run-time. In its simplest

orm, validation is service-based. In Web Services, a validat-
ng XML parser verifies all XML documents sent to a service
onform to its specified schema. Thus, if all the services used
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putation. Collectively, the p-assertion contents of a provenance
store is called process documentation.

After the experiment is carried out, validation is performed
using the algorithm outlined in Fig. 2. Validation is done for each
Fig. 1. Provenance-ba

n a workflow employ validating parsers, the workflow execu-
ion is guaranteed to satisfy syntactic types required by services.

e note however that many of the XML deserialisers incorpo-
ated into services, such as Apache Axis (ws.apache.org/axis)
nd JAXB (java.sun.com/xml/jaxb), do not perform validation
y default because validation is an expensive operation that
ffects the performance of the services. Therefore, most XML
arsers used by web services simply check if XML documents
re well-formed, and if they can be unmarshalled into compiled
lasses.

Other forms of validation and analysis can take place at run-
ime. The Pegasus planner is capable of analysing a workflow
nd re-planning its execution at run-time so as to make use of
xisting available resources [2]. Policy languages, such as KAoS
re used to perform semantic reasoning and decide if access can
e granted to services as they are being invoked [26].

. Provenance-based validation architecture

We propose a provenance-based approach to workflow val-
dation. The provenance of an experiment contains a record of
ll service invocations such that the information is sufficient to
eproduce the exact experiment. A provenance-based approach
ends itself easily to third party validation as scientists can share
ata regarding provenance with other scientists. Also, as val-
dation criteria evolve, the validation process can be repeated
ithout re-executing the experiment.
Fig. 1 explains our proposed provenance-based semantic val-

dation framework. Service providers host services on the Grid

nd advertise them in a registry. Since we wish to support multi-
evel descriptions beyond interface types, possibly provided by
hird parties, the registry provides support for semantic anno-
ations [16]. An interface for metadata publication allows for

F
v

4

lidation architecture.

etadata annotations to services, individual operations (within
service), their inputs and outputs; likewise, a query interface

aters for metadata-based discovery. The annotations make use
f one or more ontologies, as preferred by each service provider.

Users construct workflows for their experiments. The work-
ow enactment engine queries the registry for services that
rovide the tasks requested in the workflow and calls the
ppropriate services in the correct order. The services and the
orkflow enactment engine document the execution of the

xperiment using a provenance store. Each message sender and
eceiver (collectively, actors) in an experiment can assert facts
bout that experiment, called p-assertions (assertions, by an
ctor, pertaining to a process). A p-assertion may state one of
hree facts. First, the content of a message sent by one actor
o another can be asserted as an interaction p-assertion. Sec-
nd, the causal relationship between the inputs and outputs of
n actor due to its processing can be asserted as a relationship p-
ssertion. Finally, the state of an actor when an interaction took
lace can be asserted as an actor state p-assertion. Examples
f actor state p-assertions range from the workflow that is being
xecuted, to the amount of disk and CPU a service used in a com-
ig. 2. Algorithm for provenance-based validation. Requirement R and actual
alue A are calculated using the compute function shown in Fig. 3.

http://www.ws.apache.org/axis
http://www.java.sun.com/xml/jaxb
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Fig. 3. Algorithm to compute required and actual values R and A.

ervice operation in the experiment. When retrieving service
escriptions, the ontologies their annotations refer to are also
etrieved so that reasoning can be performed. The list of activities
n an experiment is provided by the provenance store. For each
ctivity, a, the validator computes two values for comparison—a
equirement on the value of some property, R, and the actual
alue of that property used in the activity A. The validator then
erforms semantic reasoning over A and R to see if A fulfils all
he requirements specified in R. If A satisfies R, then a is deemed
o be valid. An experiment is valid when all activities are proved
o be valid.

Fig. 3 explains how requirement R and actual value A are
alculated for a given activity a. First, the validator obtains
-assertions for a from the provenance store. Using this informa-
ion, the validator fetches services’ advertisements and semantic
nnotations from the registry. The user supplies extra informa-
ion needed for validation, such as the bioinformatics ontology
n Use Case 3 and the legal descriptions in Use Case 5.

The type of information to obtain from the provenance store,
he registry and the user depends on the actual validation to be
erformed. Similarly, the semantic reasoning needed to compare
equirement R and actual value A also depends on the type of
alidation. The next section explains how the semantic validator
mplements the various types of validations identified by the use
ases using the algorithms introduced in this section. Section 6
hen discusses the semantic reasoning performed.

. Validation algorithms for the use cases

Fig. 3 presented a generic algorithm for computing require-
ent R and actual value A of an activity by querying the

rovenance store and the registry. In this section, we apply the
lgorithm in Fig. 3 to the use cases in Section 2.

.1. Interface level interaction validity

Use Case 1 requires the validation of workflow interactions

t the interface level. A workflow is valid if data passed to
ll activities in the workflow conform to specifications in their

SDL interface documents, defined in XML schema. Specifi-
ally, the validator validates input XML documents (actual value

r
f
m
i

Fig. 5. Domain-level interaction validation: computing

5

ig. 4. Interface-level interaction validation: computing requirement R and
ctual value A for activity a.

) against the schemas (requirement R). For each activity a, R
nd A are computed according to Fig. 4. The validator queries the
rovenance store for the service and operation names of activity
. These names are used to obtain the WSDL document for the
ctivity from the registry. The provenance store also provides
he validator with a copy of the data passed to the activity in the
xperiment.

.2. Domain-level interaction validity

To support Use Cases 2 and 3, we validate all interactions in
workflow execution using domain-level knowledge. For each

ctivity a, we wish to compare the domain-level types of the
ata expected by the activity (R) with the actual data used (A).
he domain-level type of the actual data passed to activity a

s derived from the output of preceding operation p. (By pre-
eding, we refer to the service that precedes activity a in terms
f data flow, not time.) In the simplest case, an interaction is
onsidered domain-level valid if A is either the same type or a
ubtype of R. Fig. 5 summarises how the two values R and A
re computed. First, the validator queries the provenance store
o obtain the service and operation names of activity a and pre-
eding activity p. With the service and operation names, the
alidator retrieves the metadata attached to the WSDL message
arts from the registry. Specifically, the validator is interested
n the metadata for the output message part of operation p, and
he metadata for the input message parts of the current opera-
ion a. The last piece of information the validator requires is the
ntology. This is referred to by the ontology terms themselves
s used in the registry annotations.

.3. Activity validity

To support Use Cases 4 and 5, we verify that the metadata
ssociated with services conforms to certain criteria. We use
he myGrid profile [29] to identify the tasks services perform.
The myGrid profile is an extension of the OWL-S profile [14].)
ikewise, the profile also specifies databases usage restrictions.
hus, the process of verifying the activity validity of an exper-

ment involves checking that each activity’s profile satisfies the

equirements specified for it. The requirement can be different
or each activity, as in Use Case 4. In other situations, the require-
ent can be the same for every activity in the workflow, such as

n Use Case 5.

requirement R and actual value A for activity a.
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ig. 6. Activity validation: computing requirement R and actual value A for
ctivity a.

An activity is considered to fulfil requirement R if the meta-
ata annotation for the operation (A) is of the same class or is
subclass of R. Fig. 6 shows the algorithm used for comput-

ng the values R and A for activity a. The validator first obtains
he names of the service and operation for activity a from the
rovenance store. It then retrieves the semantic annotations of
peration a from the registry. The user supplies the requirement
for the activity. In Use Case 4, R is the original plan of the

xperiment. In Use Case 5, R is the set of legal requirements
evised according to patenting needs. Any required ontology is
lso supplied by the user.

After the validator computed the values R and A, it can ver-
fy whether A satisfies R, as shown in Fig. 2. For Use Case 1,
erification of satisfaction is performed using a validating XML
arser. For the other use cases, semantic reasoning is required.
his will be explained in the next section.

. Semantic reasoning for validation

All of the algorithms presented in the previous section require
ome properties (type, legal restrictions, etc.) of multiple entities
o be compared. An exact match of types is inadequate for valida-
ion of an experiment, as illustrated in the examples below, and so
emantic reasoning allows our architecture to take full advantage
f the relationship between types encoded in ontologies.

There is nothing in our architecture to prevent conflicts in
he assertions of the ontologies used by the service providers
n advertising services, and the user in describing the planned
ctivities for validation. Similarly, there is nothing here to pre-
ent multiple service providers from using conflicting ontologies
n advertising their services, affecting the value of the interac-
ion validity. Detecting and handling such conflicts is a wider
ssue for the Semantic Web and not within scope of our work,
ut we note that by validating workflows after execution, it is
ossible to take advantage of the removal of ontology conflicts
ver time to perform increasingly valuable validation. Addition-
lly, because our registry allows third parties to add annotations
o service descriptions, it is perfectly possible that the user of a
ervice and the publisher of annotations to that service are the
ame person. In the evaluation presented in the next section, we
ave used a single ontology without conflicts.

In this section, we illustrate some of the reasoning that can be
mployed by our validation architecture, with examples taken
rom a bioinformatics application in which we have tested a
mplementation of our architecture (see Section 7).
.1. Validation by generalisation

The simplest and most commonly required form of reasoning
s to compare two types where one is a super-class of the other.
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For example, database D may advertise its download opera-
ion as returning RNA sequences. Analysis service A advertises
ts analysis operation taking as input nucleotide sequences.
he ontology specifies that both DNA and RNA sequences are
ubclasses of Nucleotide sequences. Therefore, the interaction
etween the download operation D and analysis service A is valid
s the input type of A is a super-class of the output type of D.

Similarly, in Use Case 4, a plan is defined using high-level
oncepts to describe the operations to be performed at each
tage of the experiment. For example, in the experiment plan
or our sample bioinformatics application, one of the steps
equires a Compression algorithm. The process documentation
ecords that a PPMZ algorithm was used in the experiment and,
n the ontology, PPMZ algorithm is defined as a subclass of
ompression algorithm. Therefore, the semantic validator can
erify that this operation conforms to the one in the original
lan.

.2. Validation of inter-parameter constraints

The same experiment provides cases for more novel forms of
emantic description and reasoning in validation. One service,
ncode by Groups, in our bioinformatics workflow (full descrip-

ion in the next section) takes two parameters: a sequence and
grouping alphabet. The sequence, which may represent either
n amino acid sequence or a nucleotide sequence, is encoded as
sequence of symbols. The grouping alphabet specifies a set of
on-overlapping groups of symbols, each group having a sym-
olic name. Service gcode replaces each symbol in the input
equence with the name of the group to which it belongs, so that
he output of the service is a sequence of group names of the
ame length as the original sequence.

In order for the workflow to be semantically valid, the sym-
ols used in the input sequence of gcode must have the same
eaning as those making up groups in the grouping alphabet.
hat is, if the grouping alphabet specifies groups of nucleotides

A, G, C and T/U) then the input sequence should be a nucleotide
equence, and if the alphabet specifies groups of amino acids (A,
, C, D, E, . . .) then the input sequence should be an amino acid

equence.
The ontology contains the concepts Sequence and Groupin-

Alphabet both of which are parameterised on the types of their
lements, which can be either Nucleotides and Amino Acids.
n the registry, the gcode service is annotated with metadata
efining the semantic types of its input parameters. We wish to
dvertise the fact that the arguments used as input parameters to
his service must have corresponding BaseTypes: if the sequence
s made up of amino acids, the alphabet should also be. That is,
ne is a Sequence with property hasElementType with target X,
he other is is a GroupingAlphabet with property hasLetterType
ith target Y and X is equal to Y. Because X and Y effectively
enote variables to be instantiated in different ways in differ-
nt experiments, it is impossible to express this constraint with

WL alone. Instead we can use technologies, such as the Seman-

ic Web Rule Language [11] or role-value maps [22], with which
e can express that the value of one concept’s property (X) must
e equal to the value of another concept’s property (Y) without
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iving the type of those values. This mechanism has also been
sed to specify configuration policies of registries [18].

The input sequence and the grouping alphabet are provided
o gcode by two other actors, and these interactions are recorded
n a provenance store. From the process documentation, the
lement type of the input sequence and the letter type of the
rouping alphabet in a particular experiment can be determined.

. Evaluation

In this section, we present our evaluation of the validation
ramework in satisfying two of the use cases (Use Cases 2 and
) in a sample bioinformatics experiment.

.1. Experiment

The experiment used in evaluating our architecture was
esigned by Klaus-Peter Zauner and Stefan Artmann.

.1.1. Biology
Proteins are the essential functional components of all known

orms of life; they are linear chains of typically a few hundred
uilding blocks taken from the same set of about 20 different
mino acids. Protein sequences are assembled following a code
equence represented by another polymer (mature mRNA). This
olymer is produced by splicing certain pieces (the exons) of a
olecular copy of the coding region of a gene on the DNA,
hile discarding other pieces (the introns) of the copy. During

nd following the assembly, the protein will curl up under the
lectrostatic interaction of its thousands of atoms into a defined
ut agile shape of typically 58 nm size. The resulting 3D-shape
f the protein determines its function. The structure of protein
equences is of considerable interest for predicting which sec-
ions of the DNA encode for proteins and for predicting and
esigning the 3D-shape of proteins. For comparative studies of
he structure present in an amino acid, it is useful to determine
heir compressibility. Compression exploits context-dependent
orrelations within the sequence. The fraction of its original
ength to which a sequence can be loss-lessly compressed is an
ndication of the structure present in the sequence. In general,
o practical compression method can discover all structures, so
ctual compression of a sequence can only yield a lower bound
f the sequences compressibility. For the same reason, the com-
ressibility values are also relative to the applied compression
ethod [12]. Methods that are good in discovering structure

re computationally expensive; initial investigations on protein
ompressibility indicated that it is indeed difficult to discover
tructure in protein sequences [20]; however, recently, progress
as been made by grouping amino acids [21]: if the compression
f the sequences serves only to quantify structure and decom-
ression is not intended, the sequences can be recoded with
reduced alphabet. In an amino acid sequence, for instance,

ach amino acid symbol is replaced by a symbol represent-

ng a group of amino acids. Compression is then applied to
he recoded sequence. The results of this experiment can, for
xample, be used to determine the amino acid groupings that
aximise compressibility.

o
2
n
b

7

.1.2. Workflow
The main workflow of the comparative sequence compress-

bility experiment is shown in Fig. 7. Some stages of the
orkflow (named Measure in the figure) are sub-workflows
epicted in Fig. 8. It starts with the selection of a sequence
ample, which sample may be composed from several individ-
al sequences to provide enough data for the statistical methods
mployed by the compression algorithms (Collate Sample). This
ample is then recoded with a given group coding (Encode by
roups). The recoded sequence is then compressed with com-
ression algorithms, e.g. gzip, bzip2 or ppmz, to obtain the
ength of the compressed sequence (as seen in Fig. 8). Random
ermutations of the sequence (Shuffle) are also compressed to
rovide a standard for comparison. This standard removes the
nfluence of two factors from the calculation of compressibility:
he particular data encoding used to represent the groups, and the
on-uniform frequency of groups. From the results, a compress-
bility value is obtained for the sample sequence that is relative to
oth the compression method and group coding employed. The
ariability in the compressed length of the permuted sequences
eads to a distribution of compressibility values (Collate Sizes).
he workflow entails a sufficient number of compressions of
ermuted sequences to estimate the standard deviation for the
ompressibility (Average).

.2. Test procedure

For the evaluation, we ran the workflow multiple times and
ecorded the executions in the provenance store. Both the prove-
ance store and the registry were implemented as Web Services
available for download at pasoa.org and grimoires.org, respec-
ively). The semantic validation component was implemented
n Java and used Jena 2.1 for reasoning over the ontology. The
ntology itself was specified in OWL and based on the ontology
eveloped by the bioinformatics Grid project, myGrid. After a
et of workflow runs, each analysing one sample, the prove-
ance store contains records of interactions between services.
ach interaction record contains the invocation message that
ccurred in the workflow, which specifies the operation invoked
nd data exchanged as arguments. In addition to the message
tself, the services record relationships that specify when the
utput of one service has been used as the input of another
ervice. Collectively, the relationships describe the data flow
hroughout the experiment. The full process documentation for
ne workflow run consisted of 120 p-assertions: 60 interaction
-assertions recording the messages sent between services, 30
elationship p-assertions asserting the functions applied to that
essage data within services and 30 actor state p-assertions

ecording the contents of the scripts which processed the data.
his equated to approximately 1 MB on disk for one experi-
ent’s process documentation. For the evaluation, we deployed

he registry on a Windows XP PC with Pentium 4 CPU, 3 GHz,
GB RAM, and the provenance store and semantic validator

n another Windows XP PC with Pentium 4 CPU, 1.5 GHz,
GB RAM. The PCs were connected by a 100 Mb local ether-
et. The results of each experiment is described in further detail
elow.

http://www.pasoa.org/
http://www.grimoires.org/
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Fig. 7. Main protein compr

Two forms of validation were implemented, corresponding to
se Cases 2 and 4, implementing the algorithms in Figs. 5 and 6,

espectively. Given that we intend large numbers of experiments
o be performed, it is critical to that our approach scales well
s the amount of data in the provenance store expands. There-
ore, we performed the validation process on all experiments
n the provenance store as we increase the number of experi-

ents. Fig. 9 shows the performance of the semantic validation
rchitecture as the number of experiments for which process
ocumentation is recorded and are to be validated increases.

.3. Interaction validity, domain-level

In the interaction validity experiment, the type of each out-
ut message part in the experiment was compared with the

ype of the input message part of the succeeding invocations
n which it was used. We obtained the names of the input and
utput message parts from the provenance store. We then use
hese names to obtain their domain-level types from the registry.

f
t
w
t

8

ility experiment workflow.

he domain-level types are ontology terms. The comparison
s done by checking if the output type is the same class or

subclass of the input type. Specifically, we use the member
unctions hasSuperClass and equals of the OntClass interface
n Jena. As can be seen in Fig. 9, the time required for validation
ncreases linearly with respect to the number of experiments.
verall, one test included a total of 452N + 1 Web Service calls

o either the provenance store and registry plus 48N occurrences
f reasoning using the ontology, where N is the number of
xperiments.

.4. Conformance to plan

In the conformance to plan experiment, the planned data
ow of each experiment is expressed using high-level concepts

rom the ontology to define the operations to be performed, and
he service operations advertised in the registry were annotated
ith low-level concepts specifying the exact algorithm used by

hat operation. The validator checked that every data link in
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Fig. 8. Measure

he provenance store corresponded to one in the plan. This is
chieved by checking that the performed action is the same class
r a subclass of the planned action. As can be seen in Fig. 9, the
ime required for validation increases linearly with respect to
he number of experiments. In total, one test included a total of
60N + 1 Web Service calls to either the provenance store and
egistry plus 48N occurrences of reasoning using the ontology,
here N is the number of experiments.

.5. User feedback
We returned to the scientist to ask about the benefits of the
pproach described in this paper. Without the provenance-based
alidation system, determining the answer to the two use cases
valuated required inferring the types of data from their file-

ig. 9. Evaluation of interaction validity and conformance to plan for an increas-
ng number of experiments.
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e sub-workflow.

ames and trawling through log files to identify script (service)
ames and versions.

The primary advantages noticeable from using a provenance-
ased approach are the well-defined structure of the data
ecorded and the connections between data from disparate parts
f the experiment: in practice, this allows the exact infor-
ation required to validate or determine differences between

xperiments to be extracted and processed or presented. The
cientist also highlighted the benefit of having remote, inde-
endent stores for process documentation as compared to using
ocal log files, which became too large to manageably tra-
erse even without the detail recorded in our provenance-based
ystem.

. Discussion

There are other approaches to recording and using prove-
ance in existence. For example, the myGrid and CombeChem
combechem.org) projects have also worked on the problems
f recording data for determining provenance, and of ser-
ice description, and adopted RDF-based approaches, making
ntology-based reasoning a possibility. Comprehensive surveys
f recent provenance-related work already exist [3,23], so we
o not expand on them further here, but note that they do not
dentify the architectural elements required for validation nor
rovide a generic, domain-independent way to satisfy use cases,
uch as those presented in this paper.

As our design is dictated by pragmatic considerations, we
ave adopted a hybrid approach to information representation.

rocess documentation is made available by the provenance
tore as XML documents following open specifications [19].
nside the data structure, we may find assertions, made by some
ctors. These assertions may be expressed using semantic web

http://www.combechem.org/
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echnologies. For instance, the function performed by a service
r a description of its internal state expressed using OWL. In the
egistry, annotations provided by third parties may be encoded in
he formalism of their choice. We have explicitly experimented
ith OWL and RDFS. Therefore, semantic reasoning (based

ither on OWL or RDFS technology) only operates on a subset
f the provenance representation and some descriptions pub-
ished in the registry. More recent performance statistics for the
egistry have been published separately [7].

This hybrid approach to representation suits the inten-
ive data processing requirements of Grid applications. For
oughly 10 days of computation over 100 nodes, we expect
ur provenance store to accumulate documentation regarding
pproximately 10 × 100 × 24 × 60 × 60 × 20 = 1,728,000,000
nvocations. Selectively identifying the elements to reason over
s therefore essential. All our use cases operate using the same
easoning pattern, which consists of identifying the provenance
f some data and iterating on all its records. More advanced use
ases will result in new patterns of processing. As all possible
atterns cannot be anticipated, we allow users to use declarative
pecifications of what they expect from computations. Policy
anguages, such as KAoS [18] are strong contenders for this
roblem. KAoS positive and negative obligations allow us to
ncode what has to occur, or what should not occur. For exam-
le, we can introduce a policy for a transactional system that
equires every action to be committed or rolled back by the end
f an experiment. The challenge will be to integrate the KAoS
easoner (also OWL based) with the potentially large size of the
rovenance store.

. Conclusions

Grid based e-science experiments typically involve multiple
eterogeneous computing resources across a large, open and
istributed network. As the complexity of experiments grows,
etermining whether results produced are meaningful becomes
n increasingly difficult task. In this paper, we studied the prob-
em of validation on such experiments. Traditionally, program
alidation is carried out either statically or at run-time. How-
ver, the usefulness of either approach is limited for large scale
-science experiments. Static analyses rely on the availability
f workflow scripts. These scripts may not be expressed in lan-
uages that analysis tools operate on, or may not be available
ecause they are exposed as web services. Run-time service-
ased error checking is service dependent and users may not
ave control over its configuration.

We propose an alternative, provenance-based approach to
xperiment validation. The provenance of an experiment doc-
ments the complete process that led to the results. As a result,
alidation is not reliant on the availability of workflow scripts
r service configurations. Moreover, as science progresses, cri-
eria for validation evolve. Using a provenance-based approach,
he validation process can be repeated without re-running the

xperiment. By employing technologies for provenance record-
ng, annotation of service descriptions and semantic reasoning,
e have produced an effective solution to the validation problem.
lgorithms working over the automatically recorded documen-

[

10
ation of experiments and utilising the semantic descriptions of
xperimental services in registries can test the validity of results
o satisfy various domain-independent and domain-specific use
ases.

To demonstrate the viability of our semantic validation archi-
ecture, we have discussed how it can be used with various
lgorithms and forms of semantic reasoning to satisfy five use
ases. We have also implemented two of the use cases. Perfor-
ance tests show our algorithms scale linearly as the amount of

rocess documentation recorded increases.
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