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Abstract

E-science experiments typically involve many distributed services maintained by different organisations. After an experiment has been executed,
it is useful for a scientist to verify that the execution was performed correctly or is compatible with some existing experimental criteria or standards,
not necessarily anticipated prior to execution. Scientists may also want to review and verify experiments performed by their colleagues. There are
no existing frameworks for validating such experiments in today’s e-science systems. Users therefore have to rely on error checking performed
by the services, or adopt other ad hoc methods. This paper introduces a platform-independent framework for validating workflow executions.
The validation relies on reasoning over the documented provenance of experiment results and semantic descriptions of services advertised in a
registry. This validation process ensures experiments are performed correctly, and thus results generated are meaningful. The framework is tested
in a bioinformatics application that performs protein compressibility analysis.
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1. Introduction

Very large scale computations are now becoming rou-
tinely used as a methodology to undertake scientific research:
success stories abound in many domains, including physics
(griphyn.org), bioinformatics (mygrid.org.uk), engineering
(geodise.org) and geographical sciences (earthsystemgrid.org).
These large scale computations, which underpin a scientific pro-
cess usually referred to as e-science, are ideal candidates for use
of Grid technology [8].

E-science experiments are typically formed by invoking mul-
tiple services, whose compositions are modelled as workflows
[9]. Thus, experimental results are obtained by executing work-
flows. As part of the scientific process, it is important for
scientists to be able to verify the correctness of their own
experiments, or to review the correctness of their peers” work.
Validation ensures results generated from experiments are mean-
ingful.
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Traditionally, program validation has been carried out in
two complementary manners. On the one hand, staric ver-
ification analyses program code or a workflow before it
is executed and establishes that the program/workflow sat-
isfies some properties. These verifications are extensively
researched by the programming language community. Exam-
ples include type inference, escape analysis and model checking.
They typically depend on the semantics of the program-
ming language being analysed. On the other hand, static
verification is complemented by run-time checking, which
is carried out when the program executes, and verifies that
data values satisfy constraints, expressed by either types or
assertions.

Such validation methods suffer from limitations when work-
flows are executed in dynamic open environments. First,
programs (or workflows) may not be expressed in languages
that analysis tools operate on, or may not be directly available
because they are exposed as services, hereby preventing static
analysis. Second, in general, in open environments, we can-
not make the assumption that services always check that their
inputs or outputs match their interface specifications (if avail-
able at all); furthermore, such interfaces may be under-specified
(for instance, many bioinformatics services tend to process and
return strings encoding specific biological sequence data); as a
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result, no guarantee exists that specific, domain-level types will
be checked dynamically.

A new, more specific limitation comes from the evolving
conduct of e-science. Studies of user practice have shown that
rapid development cycles are being adopted by e-scientists,
in which workflows are frequently modified and tuned and
scientific models are evolved accordingly. As a result, it is
important for scientists to be able to verify that previous
experimental results are compatible with recent criteria, mod-
els and requirements. Since these models did not necessarily
exist at experiment design or execution time, it is a neces-
sity to perform such validation after the experiment has been
completed.

The provenance of a piece of data denotes the process by
which it is produced. Provenance-aware applications are appli-
cations that record documentation of their execution so that the
provenance of the data they produce can be obtained and rea-
soned over. We have studied a range of e-science application
domains and established that they have a range of requirements
for provenance-awareness [15]. In the former requirements
study, many examples of experiment validation were discovered
and in varying domains. For example, in a distributed parti-
cle physics experiment, there was a requirement to verify that
those library versions used to analyse the experiment data were
not ones known to contain bugs. In partially lab-based biology
and chemistry experiments, requirements for validation included
checking that health and safety rules had been followed by exper-
iments in the past month. In a more general, computer-science
centred example [25], processes can be validated to ensure, for
fault tolerance, that multiple services assumed to be independent
did not actually depend on the same, possibly faulty, service.
We refer the reader to the survey for the full range of such use
cases.

In this paper, our thesis is that provenance-based validation
of experiments allows us to verify their validity after experi-
ments have been conducted. Specifically, our contributions are:
(a) a provenance-based architecture to undertake validation of
experiments; (b) the use of semantic reasoning in undertaking
validation of experiments; (c) an implementation of the archi-
tecture and its deployment in a bioinformatics application in
order to support a set of use cases. Our experimentation with
the system shows that our approach is tractable and performs
efficiently.

The structure of the paper is as follows. Section 2 describes
some use cases we have identified that require experiment valida-
tion. Section 3 briefly discusses current approaches to e-science
experiment validation and explains why it is necessary to per-
form validation after an experiment was executed. Section 4
introduces the proposed framework for validation of workflow
execution. Section 5 then describes how the architecture can
be applied to the use cases introduced in Section 2. In Section
6, we discuss how semantic reasoning is essential in properly
establishing the validity of experiments. Section 7 then presents
results from an implementation of the validation framework with
an e-science application (specifically, the protein compressibil-
ity analysis experiment). The paper finishes with discussion in
Section 8 and conclusions in Section 9.

2. Use cases

The motivation for this work comes from real problems found
by scientists in their day-to-day work. Therefore, in this sec-
tion, we introduce a number of use cases in the bioinformatics
domain where it is necessary to perform some form of validation
of experiments after they have been completed. As identified in
the use cases below, while service-based validation can only
be performed at run-time, it is sometimes necessary to validate
an experiment after it has been executed. Third parties, such
as reviewers and other scientists, may want to verify that the
results obtained were computed correctly according to some cri-
teria. These criteria may not be known when the experiment was
designed, because criteria evolve as science progresses. Thus,
it is important that previously computed results can be verified
according to revised sets of criteria.

Use Case 1 ((Interaction validity, interface level)). A biologist,
B, performs an experiment on a protein sequence. One stage
of this experiment involves generating a pre-specified number
of permutations of that sequence. Later, another biologist, R,
judges the experiment results and considers them to be suspi-
cious. R determines that the number of permutations specified
was an invalid value, e.g. it was negative.

In this example, we consider that the service provider could
have specified a restriction for the number of permutations to
non-negative integers in the service schema, since the parameter
only makes sense for non-negative integers. However, this does
not guarantee that the service will validate the data against the
schema at run-time. In general, whether validation is carried out
at run-time is service specific.

In Use Case 1, B could have entered a negative value for
the number of permutations. In this case, the value is incorrect
because it does not conform to the restrictions and requirements
as specified by the interface document of the service. By validat-
ing the experiment using its provenance, R can determine that B
entered an invalid value for the number of permutations, and thus
the results generated by the experiment were not meaningful.

Use Case 2 ((Interaction validity, domain-level)). A bioinfor-
matician, B, downloads a file containing sequence data from a
remote database. B then processes the sequence using an anal-
ysis service. Later, a reviewer, R, suspects that the sequence
may have been a nucleotide sequence but processed by a ser-
vice that can only analyse meaningfully amino acid sequences.
R determines whether this was the case.

Nucleotides and amino acids are two separate classes of
biological sequences, but the symbols used in the syntax of
nucleotides are a subset of those used for amino acids. There-
fore, it is not always possible to detect which type of sequence
is used by superficially examining the data. The service used in
Use Case 2 could require an amino acid sequence as its input. If a
nucleotide sequence was accidentally used rather than an amino
acid sequence, the problem would not be detected at run-time,
and the experiment results would not be meaningful.

Given that many bioinformatics services operate on strings,
the biological interpretation of a piece of data is information



not directly available from interface specification, and cannot
be easily derived from the data itself. Typically, such additional
description that is useful or of interest to the user has to be
made explicit elsewhere. Thus, the interaction in an experiment
can be correct according to service interface specifications, but
incorrect according to the domain-level understanding of the
problem.

Use Case 3 ((Ontology revision)). A bioinformatician, B, per-
forms an experiment on a sequence downloaded from a remote
database. Later, another bioinformatician, D, updates the ontol-
ogy that classifies sequences stored in the database to correct
an error in the previous version. B checks if the experiment is
compatible with the new version of the ontology.

Ontologies are invaluable in describing domain-specific
knowledge, such as that DNA and RNA sequences are subtypes
of nucleotide sequences, as illustrated by the Gene Ontology
[24]. If a service advertises that it accepts nucleotide sequences,
we can infer that the service can also meaningfully process DNA
and RNA sequences.

Similar to Use Case 2, the bioinformatician B in Use Case
3 wants to validate the interactions in the experiment according
to their domain-level characterisation (specifically, biological
sequence types). Therefore, to ensure results of the experiment
are not affected by this error in the ontology, B validates the exe-
cution against the revised ontology. For instance, if at the time
that the experiment was performed, the ontology erroneously
included an assertion that the class NucleotideSequence sub-
sumed the class AminoAcidSequence, then a workflow using
a service expecting nucleotide sequences would be determined
valid when applied to amino acid sequences. After correction,
the workflow can be seen to be no longer valid. The value, in
this case, of validation after experiments have taken place is that
information can be assumed to be as accurate as possible before
workflow execution.

Use Case 4 ((Conformance to plan)). A biologist, B, creates a
plan for an experiment by defining the type of analysis to perform
at each stage of the experiment. B then performs an experiment
that is intended to follow the plan. Later another biologist, R,
determines whether each operation performed in the experiment
fulfilled an intended operation in the plan.

In Use Case 4, the plan defined by B is abstract in nature. To
verify whether the experiment conformed to the original plan,
R examines the rasks the services perform. In other words, R
is interested in verifying the properties of the services, not the
interactions between the services. This is in contrast to the pre-
vious use cases, where the validation is performed on the types
of the data provided and accepted by the services.

Use Case 5 ((Patentability of results)). A biologist, B, per-
forms an experiment. Later, B wishes to patent the results. A
reviewer, R, checks that no service used in the experiment has
legal restrictions such that the results could not be patented.

In Use Case 5, R is interested in attributes, such as condi-
tion of use, legal constraints and patents. These conditions are
(probably) unforeseen by biologist B when they designed and

performed the experiment. In this case, it may not be a lack of
information available before workflow execution, but a lack of
requirement to validate that means validation will not occur. As
another example, new scientific results published in the literature
may introduce a doubt about the quality of part of a database.
The scientist may wish to ensure that the data they used in a
past experiment, did not come or derive from this database. In
general, our approach helps the case where, for one reason or
another, the biologist chooses not to validate or does not even
consider validating the experiment before execution as, through
our approach, the facility is readily available after execution.

This list of use cases is by no means exhaustive. We have
focussed on forms of validation requiring minimal additional
input from the validating user, and so do not address those con-
cerning the scientific intent of the experiment. Other use cases
are made explicit elsewhere [15], some of which are examined
in other papers [10], while others remain for future work.

3. Current validation approaches

Web Services are described by a WSDL interface [4] that
specifies the operations they support, the inputs they expect, and
the outputs they produce. The inputs and outputs of an operation
are part of a message and their structure, referred to as interface
type, is commonly specified using XML Schema [6]. In other
words, it is the type expected by the transport layer (i.e. SOAP
[17]).

In our approach, we allow anyone to augment interface types
with further descriptions that characterise additional invariants
of interest to the user. For instance, in the previous section,
we discussed a characterisation of data in domain-level terms.
OWL-S [14] allows for semantic types expressed using the OWL
ontology to be added to the service profile. Given that the world is
evolving, we consider that several views about an object may co-
exist. Hence, it is permitted to associate several semantic types
to a given entity: this is the approach adopted by myGrid [28],
which also relies on the OWL ontology language to give a clas-
sification of biological data. Such descriptions are not restricted
to inputs and outputs, but can be annotations to service inter-
faces that identify the functions they perform or the resources
they rely upon. Such information may be provided by the service
provider, or by a third party, and published in a registry, such as
the Grimoires registry [16].

In Section 1, we discussed two commonly used forms of
validation: static and dynamic. Static validation operates on
workflow source code. The vast array of static analyses devised
by the programming language community is also applicable to
workflows, such as type inference, escape analysis, etc. Some
analysis were conceived to address problems that are specific
to workflows. Examples of these include workflow concurrency
analysis [13], graph-based partitioning of workflows [1], model
checking of activity graphs [5] and checking the protocols of
Web Service composition by multi-agent systems [27].

Validation may also be performed at run-time. In its simplest
form, validation is service-based. In Web Services, a validat-
ing XML parser verifies all XML documents sent to a service
conform to its specified schema. Thus, if all the services used
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Fig. 1. Provenance-based validation architecture.

in a workflow employ validating parsers, the workflow execu-
tion is guaranteed to satisfy syntactic types required by services.
We note however that many of the XML deserialisers incorpo-
rated into services, such as Apache Axis (ws.apache.org/axis)
and JAXB (java.sun.com/xml/jaxb), do not perform validation
by default because validation is an expensive operation that
affects the performance of the services. Therefore, most XML
parsers used by web services simply check if XML documents
are well-formed, and if they can be unmarshalled into compiled
classes.

Other forms of validation and analysis can take place at run-
time. The Pegasus planner is capable of analysing a workflow
and re-planning its execution at run-time so as to make use of
existing available resources [2]. Policy languages, such as KA0S
are used to perform semantic reasoning and decide if access can
be granted to services as they are being invoked [26].

4. Provenance-based validation architecture

We propose a provenance-based approach to workflow val-
idation. The provenance of an experiment contains a record of
all service invocations such that the information is sufficient to
reproduce the exact experiment. A provenance-based approach
lends itself easily to third party validation as scientists can share
data regarding provenance with other scientists. Also, as val-
idation criteria evolve, the validation process can be repeated
without re-executing the experiment.

Fig. 1 explains our proposed provenance-based semantic val-
idation framework. Service providers host services on the Grid
and advertise them in a registry. Since we wish to support multi-
level descriptions beyond interface types, possibly provided by
third parties, the registry provides support for semantic anno-
tations [16]. An interface for metadata publication allows for

metadata annotations to services, individual operations (within
a service), their inputs and outputs; likewise, a query interface
caters for metadata-based discovery. The annotations make use
of one or more ontologies, as preferred by each service provider.

Users construct workflows for their experiments. The work-
flow enactment engine queries the registry for services that
provide the tasks requested in the workflow and calls the
appropriate services in the correct order. The services and the
workflow enactment engine document the execution of the
experiment using a provenance store. Each message sender and
receiver (collectively, actors) in an experiment can assert facts
about that experiment, called p-assertions (assertions, by an
actor, pertaining to a process). A p-assertion may state one of
three facts. First, the content of a message sent by one actor
to another can be asserted as an interaction p-assertion. Sec-
ond, the causal relationship between the inputs and outputs of
an actor due to its processing can be asserted as a relationship p-
assertion. Finally, the state of an actor when an interaction took
place can be asserted as an actor state p-assertion. Examples
of actor state p-assertions range from the workflow that is being
executed, to the amount of disk and CPU a service used inacom-
putation. Collectively, the p-assertion contents of a provenance
store is called process documentation.

After the experiment is carried out, validation is performed
using the algorithm outlined in Fig. 2. Validation is done for each

is Valid < true
forall activitiesa a is Valid do
(R, A) < compute(a)
is Valid < A satisfiesR
endfor

Fig. 2. Algorithm for provenance-based validation. Requirement R and actual
value A are calculated using the compute function shown in Fig. 3.
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Function: Compute requirement R and actual value A
Require: Activity a
Retrieve p-assertions from provenance store for activity a
Get advertisements from registry for activity a
Get user supplied information for activity a
R < Compute required value for a from above data
A < Compute actual value for a from above data

Fig. 3. Algorithm to compute required and actual values R and A.

service operation in the experiment. When retrieving service
descriptions, the ontologies their annotations refer to are also
retrieved so that reasoning can be performed. The list of activities
in an experiment is provided by the provenance store. For each
activity, a, the validator computes two values for comparison—a
requirement on the value of some property, R, and the actual
value of that property used in the activity A. The validator then
performs semantic reasoning over A and R to see if A fulfils all
the requirements specified in R. If A satisfies R, then a is deemed
to be valid. An experiment is valid when all activities are proved
to be valid.

Fig. 3 explains how requirement R and actual value A are
calculated for a given activity a. First, the validator obtains
p-assertions for a from the provenance store. Using this informa-
tion, the validator fetches services’ advertisements and semantic
annotations from the registry. The user supplies extra informa-
tion needed for validation, such as the bioinformatics ontology
in Use Case 3 and the legal descriptions in Use Case 5.

The type of information to obtain from the provenance store,
the registry and the user depends on the actual validation to be
performed. Similarly, the semantic reasoning needed to compare
requirement R and actual value A also depends on the type of
validation. The next section explains how the semantic validator
implements the various types of validations identified by the use
cases using the algorithms introduced in this section. Section 6
then discusses the semantic reasoning performed.

5. Validation algorithms for the use cases

Fig. 3 presented a generic algorithm for computing require-
ment R and actual value A of an activity by querying the
provenance store and the registry. In this section, we apply the
algorithm in Fig. 3 to the use cases in Section 2.

5.1. Interface level interaction validity

Use Case 1 requires the validation of workflow interactions
at the interface level. A workflow is valid if data passed to
all activities in the workflow conform to specifications in their
WSDL interface documents, defined in XML schema. Specifi-
cally, the validator validates input XML documents (actual value

Retrieve service/operation names of a from p-assertions
R <« Get message part type in WSDL document for a from advertisements
A < Retrieve input to a from p-assertions

Fig. 4. Interface-level interaction validation: computing requirement R and
actual value A for activity a.

A) against the schemas (requirement R). For each activity a, R
and A are computed according to Fig. 4. The validator queries the
provenance store for the service and operation names of activity
a. These names are used to obtain the WSDL document for the
activity from the registry. The provenance store also provides
the validator with a copy of the data passed to the activity in the
experiment.

5.2. Domain-level interaction validity

To support Use Cases 2 and 3, we validate all interactions in
a workflow execution using domain-level knowledge. For each
activity a, we wish to compare the domain-level types of the
data expected by the activity (R) with the actual data used (A).
The domain-level type of the actual data passed to activity a
is derived from the output of preceding operation p. (By pre-
ceding, we refer to the service that precedes activity a in terms
of data flow, not time.) In the simplest case, an interaction is
considered domain-level valid if A is either the same type or a
subtype of R. Fig. 5 summarises how the two values R and A
are computed. First, the validator queries the provenance store
to obtain the service and operation names of activity a and pre-
ceding activity p. With the service and operation names, the
validator retrieves the metadata attached to the WSDL message
parts from the registry. Specifically, the validator is interested
in the metadata for the output message part of operation p, and
the metadata for the input message parts of the current opera-
tion a. The last piece of information the validator requires is the
ontology. This is referred to by the ontology terms themselves
as used in the registry annotations.

5.3. Activity validity

To support Use Cases 4 and 5, we verify that the metadata
associated with services conforms to certain criteria. We use
the myGrid profile [29] to identify the tasks services perform.
(The myGrid profile is an extension of the OWL-S profile [14].)
Likewise, the profile also specifies databases usage restrictions.
Thus, the process of verifying the activity validity of an exper-
iment involves checking that each activity’s profile satisfies the
requirements specified for it. The requirement can be different
for each activity, as in Use Case 4. In other situations, the require-
ment can be the same for every activity in the workflow, such as
in Use Case 5.

Retrieve service/operation names of a from p-assertions

Retrieve service/operation names of preceding activity p from p-assertions

R « Get each input domain-level type of a from advertisement

A « Get output domain-level type of SAME ARGUMENT OF p from advertisement

Fig. 5. Domain-level interaction validation: computing requirement R and actual value A for activity a.
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Retrieve service and operation names of a from p-assertions
Get ontology from user

A < Get semantic type of a from advertisements

R < Get required activity type of a from user

Fig. 6. Activity validation: computing requirement R and actual value A for
activity a.

An activity is considered to fulfil requirement R if the meta-
data annotation for the operation (A) is of the same class or is
a subclass of R. Fig. 6 shows the algorithm used for comput-
ing the values R and A for activity a. The validator first obtains
the names of the service and operation for activity a from the
provenance store. It then retrieves the semantic annotations of
operation a from the registry. The user supplies the requirement
R for the activity. In Use Case 4, R is the original plan of the
experiment. In Use Case 5, R is the set of legal requirements
devised according to patenting needs. Any required ontology is
also supplied by the user.

After the validator computed the values R and A, it can ver-
ify whether A satisfies R, as shown in Fig. 2. For Use Case 1,
verification of satisfaction is performed using a validating XML
parser. For the other use cases, semantic reasoning is required.
This will be explained in the next section.

6. Semantic reasoning for validation

All of the algorithms presented in the previous section require
some properties (type, legal restrictions, etc.) of multiple entities
to be compared. An exact match of types is inadequate for valida-
tion of an experiment, as illustrated in the examples below, and so
semantic reasoning allows our architecture to take full advantage
of the relationship between types encoded in ontologies.

There is nothing in our architecture to prevent conflicts in
the assertions of the ontologies used by the service providers
in advertising services, and the user in describing the planned
activities for validation. Similarly, there is nothing here to pre-
vent multiple service providers from using conflicting ontologies
in advertising their services, affecting the value of the interac-
tion validity. Detecting and handling such conflicts is a wider
issue for the Semantic Web and not within scope of our work,
but we note that by validating workflows after execution, it is
possible to take advantage of the removal of ontology conflicts
over time to perform increasingly valuable validation. Addition-
ally, because our registry allows third parties to add annotations
to service descriptions, it is perfectly possible that the user of a
service and the publisher of annotations to that service are the
same person. In the evaluation presented in the next section, we
have used a single ontology without conflicts.

In this section, we illustrate some of the reasoning that can be
employed by our validation architecture, with examples taken
from a bioinformatics application in which we have tested a
implementation of our architecture (see Section 7).

6.1. Validation by generalisation

The simplest and most commonly required form of reasoning
is to compare two types where one is a super-class of the other.

For example, database D may advertise its download opera-
tion as returning RNA sequences. Analysis service A advertises
its analysis operation taking as input nucleotide sequences.
The ontology specifies that both DNA and RNA sequences are
subclasses of Nucleotide sequences. Therefore, the interaction
between the download operation D and analysis service A is valid
as the input type of A is a super-class of the output type of D.

Similarly, in Use Case 4, a plan is defined using high-level
concepts to describe the operations to be performed at each
stage of the experiment. For example, in the experiment plan
for our sample bioinformatics application, one of the steps
requires a Compression algorithm. The process documentation
records that a PPMZ algorithm was used in the experiment and,
in the ontology, PPMZ algorithm is defined as a subclass of
Compression algorithm. Therefore, the semantic validator can
verify that this operation conforms to the one in the original
plan.

6.2. Validation of inter-parameter constraints

The same experiment provides cases for more novel forms of
semantic description and reasoning in validation. One service,
Encode by Groups, in our bioinformatics workflow (full descrip-
tion in the next section) takes two parameters: a sequence and
a grouping alphabet. The sequence, which may represent either
an amino acid sequence or a nucleotide sequence, is encoded as
a sequence of symbols. The grouping alphabet specifies a set of
non-overlapping groups of symbols, each group having a sym-
bolic name. Service gcode replaces each symbol in the input
sequence with the name of the group to which it belongs, so that
the output of the service is a sequence of group names of the
same length as the original sequence.

In order for the workflow to be semantically valid, the sym-
bols used in the input sequence of gcode must have the same
meaning as those making up groups in the grouping alphabet.
That is, if the grouping alphabet specifies groups of nucleotides
(A, G, Cand T/U) then the input sequence should be a nucleotide
sequence, and if the alphabet specifies groups of amino acids (A,
B, C, D, E,...) then the input sequence should be an amino acid
sequence.

The ontology contains the concepts Sequence and Groupin-
gAlphabet both of which are parameterised on the types of their
elements, which can be either Nucleotides and Amino Acids.
In the registry, the gcode service is annotated with metadata
defining the semantic types of its input parameters. We wish to
advertise the fact that the arguments used as input parameters to
this service must have corresponding BaseTypes: if the sequence
is made up of amino acids, the alphabet should also be. That is,
one is a Sequence With property hasElementType with target X,
the other is is a GroupingAlphabet with property hasLetterType
with target Y and X is equal to Y. Because X and Y effectively
denote variables to be instantiated in different ways in differ-
ent experiments, it is impossible to express this constraint with
OWL alone. Instead we can use technologies, such as the Seman-
tic Web Rule Language [11] or role-value maps [22], with which
we can express that the value of one concept’s property (X) must
be equal to the value of another concept’s property (Y) without



giving the type of those values. This mechanism has also been
used to specify configuration policies of registries [18].

The input sequence and the grouping alphabet are provided
to gcode by two other actors, and these interactions are recorded
in a provenance store. From the process documentation, the
element type of the input sequence and the letter type of the
grouping alphabet in a particular experiment can be determined.

7. Evaluation

In this section, we present our evaluation of the validation
framework in satisfying two of the use cases (Use Cases 2 and
4) in a sample bioinformatics experiment.

7.1. Experiment

The experiment used in evaluating our architecture was
designed by Klaus-Peter Zauner and Stefan Artmann.

7.1.1. Biology

Proteins are the essential functional components of all known
forms of life; they are linear chains of typically a few hundred
building blocks taken from the same set of about 20 different
amino acids. Protein sequences are assembled following a code
sequence represented by another polymer (mature mRNA). This
polymer is produced by splicing certain pieces (the exons) of a
molecular copy of the coding region of a gene on the DNA,
while discarding other pieces (the introns) of the copy. During
and following the assembly, the protein will curl up under the
electrostatic interaction of its thousands of atoms into a defined
but agile shape of typically 58 nm size. The resulting 3D-shape
of the protein determines its function. The structure of protein
sequences is of considerable interest for predicting which sec-
tions of the DNA encode for proteins and for predicting and
designing the 3D-shape of proteins. For comparative studies of
the structure present in an amino acid, it is useful to determine
their compressibility. Compression exploits context-dependent
correlations within the sequence. The fraction of its original
length to which a sequence can be loss-lessly compressed is an
indication of the structure present in the sequence. In general,
no practical compression method can discover all structures, so
actual compression of a sequence can only yield a lower bound
of the sequences compressibility. For the same reason, the com-
pressibility values are also relative to the applied compression
method [12]. Methods that are good in discovering structure
are computationally expensive; initial investigations on protein
compressibility indicated that it is indeed difficult to discover
structure in protein sequences [20]; however, recently, progress
has been made by grouping amino acids [21]: if the compression
of the sequences serves only to quantify structure and decom-
pression is not intended, the sequences can be recoded with
a reduced alphabet. In an amino acid sequence, for instance,
each amino acid symbol is replaced by a symbol represent-
ing a group of amino acids. Compression is then applied to
the recoded sequence. The results of this experiment can, for
example, be used to determine the amino acid groupings that
maximise compressibility.

7.1.2. Workflow

The main workflow of the comparative sequence compress-
ibility experiment is shown in Fig. 7. Some stages of the
workflow (named Measure in the figure) are sub-workflows
depicted in Fig. 8. It starts with the selection of a sequence
sample, which sample may be composed from several individ-
ual sequences to provide enough data for the statistical methods
employed by the compression algorithms (Collate Sample). This
sample is then recoded with a given group coding (Encode by
Groups). The recoded sequence is then compressed with com-
pression algorithms, e.g. gzip, bzip2 or ppmz, to obtain the
length of the compressed sequence (as seen in Fig. 8). Random
permutations of the sequence (Shuffle) are also compressed to
provide a standard for comparison. This standard removes the
influence of two factors from the calculation of compressibility:
the particular data encoding used to represent the groups, and the
non-uniform frequency of groups. From the results, a compress-
ibility value is obtained for the sample sequence that is relative to
both the compression method and group coding employed. The
variability in the compressed length of the permuted sequences
leads to a distribution of compressibility values (Collate Sizes).
The workflow entails a sufficient number of compressions of
permuted sequences to estimate the standard deviation for the
compressibility (Average).

7.2. Test procedure

For the evaluation, we ran the workflow multiple times and
recorded the executions in the provenance store. Both the prove-
nance store and the registry were implemented as Web Services
(available for download at pasoa.org and grimoires.org, respec-
tively). The semantic validation component was implemented
in Java and used Jena 2.1 for reasoning over the ontology. The
ontology itself was specified in OWL and based on the ontology
developed by the bioinformatics Grid project, myGrid. After a
set of workflow runs, each analysing one sample, the prove-
nance store contains records of interactions between services.
Each interaction record contains the invocation message that
occurred in the workflow, which specifies the operation invoked
and data exchanged as arguments. In addition to the message
itself, the services record relationships that specify when the
output of one service has been used as the input of another
service. Collectively, the relationships describe the data flow
throughout the experiment. The full process documentation for
one workflow run consisted of 120 p-assertions: 60 interaction
p-assertions recording the messages sent between services, 30
relationship p-assertions asserting the functions applied to that
message data within services and 30 actor state p-assertions
recording the contents of the scripts which processed the data.
This equated to approximately 1 MB on disk for one experi-
ment’s process documentation. For the evaluation, we deployed
the registry on a Windows XP PC with Pentium 4 CPU, 3 GHz,
2GB RAM, and the provenance store and semantic validator
on another Windows XP PC with Pentium 4 CPU, 1.5GHz,
2 GB RAM. The PCs were connected by a 100 Mb local ether-
net. The results of each experiment is described in further detail
below.
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Fig. 7. Main protein compressibility experiment workflow.

Two forms of validation were implemented, corresponding to
Use Cases 2 and 4, implementing the algorithms in Figs. 5and 6,
respectively. Given that we intend large numbers of experiments
to be performed, it is critical to that our approach scales well
as the amount of data in the provenance store expands. There-
fore, we performed the validation process on all experiments
in the provenance store as we increase the number of experi-
ments. Fig. 9 shows the performance of the semantic validation
architecture as the number of experiments for which process
documentation is recorded and are to be validated increases.

7.3. Interaction validity, domain-level

In the interaction validity experiment, the type of each out-
put message part in the experiment was compared with the
type of the input message part of the succeeding invocations
in which it was used. We obtained the names of the input and
output message parts from the provenance store. We then use
these names to obtain their domain-level types from the registry.

The domain-level types are ontology terms. The comparison
is done by checking if the output type is the same class or
a subclass of the input type. Specifically, we use the member
functions hasSuperClass and equals of the OntClass interface
in Jena. As can be seen in Fig. 9, the time required for validation
increases linearly with respect to the number of experiments.
Overall, one test included a total of 452N + 1 Web Service calls
to either the provenance store and registry plus 48N occurrences
of reasoning using the ontology, where N is the number of
experiments.

7.4. Conformance to plan

In the conformance to plan experiment, the planned data
flow of each experiment is expressed using high-level concepts
from the ontology to define the operations to be performed, and
the service operations advertised in the registry were annotated
with low-level concepts specifying the exact algorithm used by
that operation. The validator checked that every data link in
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the provenance store corresponded to one in the plan. This is
achieved by checking that the performed action is the same class
or a subclass of the planned action. As can be seen in Fig. 9, the
time required for validation increases linearly with respect to
the number of experiments. In total, one test included a total of
260N +1 Web Service calls to either the provenance store and
registry plus 48N occurrences of reasoning using the ontology,
where N is the number of experiments.

7.5. User feedback

We returned to the scientist to ask about the benefits of the
approach described in this paper. Without the provenance-based
validation system, determining the answer to the two use cases
evaluated required inferring the types of data from their file-
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Fig. 9. Evaluation of interaction validity and conformance to plan for an increas-
ing number of experiments.

names and trawling through log files to identify script (service)
names and versions.

The primary advantages noticeable from using a provenance-
based approach are the well-defined structure of the data
recorded and the connections between data from disparate parts
of the experiment: in practice, this allows the exact infor-
mation required to validate or determine differences between
experiments to be extracted and processed or presented. The
scientist also highlighted the benefit of having remote, inde-
pendent stores for process documentation as compared to using
local log files, which became too large to manageably tra-
verse even without the detail recorded in our provenance-based
system.

8. Discussion

There are other approaches to recording and using prove-
nance in existence. For example, the myGrid and CombeChem
(combechem.org) projects have also worked on the problems
of recording data for determining provenance, and of ser-
vice description, and adopted RDF-based approaches, making
ontology-based reasoning a possibility. Comprehensive surveys
of recent provenance-related work already exist [3,23], so we
do not expand on them further here, but note that they do not
identify the architectural elements required for validation nor
provide a generic, domain-independent way to satisfy use cases,
such as those presented in this paper.

As our design is dictated by pragmatic considerations, we
have adopted a hybrid approach to information representation.
Process documentation is made available by the provenance
store as XML documents following open specifications [19].
Inside the data structure, we may find assertions, made by some
actors. These assertions may be expressed using semantic web
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technologies. For instance, the function performed by a service
or a description of its internal state expressed using OWL. In the
registry, annotations provided by third parties may be encoded in
the formalism of their choice. We have explicitly experimented
with OWL and RDFS. Therefore, semantic reasoning (based
either on OWL or RDFS technology) only operates on a subset
of the provenance representation and some descriptions pub-
lished in the registry. More recent performance statistics for the
registry have been published separately [7].

This hybrid approach to representation suits the inten-
sive data processing requirements of Grid applications. For
roughly 10 days of computation over 100 nodes, we expect
our provenance store to accumulate documentation regarding
approximately 10 x 100 x 24 x 60 x 60 x 20=1,728,000,000
invocations. Selectively identifying the elements to reason over
is therefore essential. All our use cases operate using the same
reasoning pattern, which consists of identifying the provenance
of some data and iterating on all its records. More advanced use
cases will result in new patterns of processing. As all possible
patterns cannot be anticipated, we allow users to use declarative
specifications of what they expect from computations. Policy
languages, such as KAoS [18] are strong contenders for this
problem. KA0S positive and negative obligations allow us to
encode what has to occur, or what should not occur. For exam-
ple, we can introduce a policy for a transactional system that
requires every action to be committed or rolled back by the end
of an experiment. The challenge will be to integrate the KAoS
reasoner (also OWL based) with the potentially large size of the
provenance store.

9. Conclusions

Grid based e-science experiments typically involve multiple
heterogeneous computing resources across a large, open and
distributed network. As the complexity of experiments grows,
determining whether results produced are meaningful becomes
an increasingly difficult task. In this paper, we studied the prob-
lem of validation on such experiments. Traditionally, program
validation is carried out either statically or at run-time. How-
ever, the usefulness of either approach is limited for large scale
e-science experiments. Static analyses rely on the availability
of workflow scripts. These scripts may not be expressed in lan-
guages that analysis tools operate on, or may not be available
because they are exposed as web services. Run-time service-
based error checking is service dependent and users may not
have control over its configuration.

We propose an alternative, provenance-based approach to
experiment validation. The provenance of an experiment doc-
uments the complete process that led to the results. As a result,
validation is not reliant on the availability of workflow scripts
or service configurations. Moreover, as science progresses, cri-
teria for validation evolve. Using a provenance-based approach,
the validation process can be repeated without re-running the
experiment. By employing technologies for provenance record-
ing, annotation of service descriptions and semantic reasoning,
we have produced an effective solution to the validation problem.
Algorithms working over the automatically recorded documen-
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tation of experiments and utilising the semantic descriptions of
experimental services in registries can test the validity of results
to satisfy various domain-independent and domain-specific use
cases.

To demonstrate the viability of our semantic validation archi-
tecture, we have discussed how it can be used with various
algorithms and forms of semantic reasoning to satisfy five use
cases. We have also implemented two of the use cases. Perfor-
mance tests show our algorithms scale linearly as the amount of
process documentation recorded increases.
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