
 A security architecture for a semantic Grid registry

Victor Tan, Weijian Fang, Sylvia C. Wong, Simon Miles, Luc Moreau
School of Electronics and Computer Science

University of Southampton
vhkt@ecs.soton.ac.uk

Abstract

Existing registry technologies such as UDDI can be enhanced to support capabilities for semantic
reasoning and inquiry, which subsequently increases its usability range. The Grimoires registry was
developed to provide such support through the use of metadata attachments to registry entities. The
use of such attachments provides a way for allowing service operators to specify security assertions
pertaining to registry entities owned by them. These assertions may however have to be reconciled
with existing registry policies. A security architecture based on the XACML standard and deployed
in the OMII framework is outlined to demonstrate how this goal is achieved in the registry.

1. Introduction
Registries are important in a large scale,
distributed environment (such as the Grid) as
they provide the necessary functionality that
allows service providers to expose information
about their services to potential users. Existing
service registry technologies such as UDDI are
however limited by several shortcomings with
regards to the service descriptions they support,
generally pertaining to the constraints in the
information model for these service
descriptions. Such constraints make it difficult
to satisfy sophisticated user requirements for
service discovery based on service
characteristics inexpressible in the UDDI
model, or for useful semantic reasoning on these
descriptions. The Grimoires registry, which was
designed and developed in the context of the
myGrid project [6] and is now part of the OMII
project [3], seeks to provide a solution to these
issues through the use of metadata attachments.

As is the case for all Grid-based services, some
form of security architecture is needed to
protect the contents of the registry. In this paper,
we describe the use of metadata for semantic
descriptions and their requirements for security.
We then discuss the potential use of metadata
attachments as a way of enhancing the
flexibility of expressing access control to the
registry contents.

2. Using metadata for registry
publications
Metadata are extra pieces of data giving
information about existing entities in the
registry. Currently, entities to which metadata
can be attached are UDDI BusinessEntity,

BusinessService, tModel and BindingTemplate
and WSDL operation and message part. For
example, BusinessEntities can be annotated
with appropriate ratings; functionality profiles
can be added to BusinessServices; and semantic
types of operation arguments can be attached to
WSDL message parts. A piece of metadata is in
the form of an RDF [9] triple — the subject is
the entity to be annotated, the predicate is the
type of the annotation, and the object is the
value. The metadata value can be a string, a
URI, or structured data in RDF. A unique key is
assigned to every piece of metadata published
allowing metadata attachments to be updated
without republishing the service. This presents
an efficient way of capturing ephemeral
information about services that change often,
such as current load of a service.

There is no limit to the number of attachments
each entity can have. Since each piece of
metadata has its own unique key, it can be
updated without republishing other metadata
attached to the same entity. Support is provided
for third party annotations, i.e. the ability to
publish metadata is available to both service
operators and third parties. This provides the
flexibility of allowing users with expert
knowledge to enrich service descriptions in
ways that might not be conceivable to the
original publishers. For instance, users can
provide their personal ratings on services.

Multiple search patterns are also supported in
Grimoires. The simplest form of query returns a
list of all metadata attached to the specified
entity. A more complex search pattern is
supported using the operation find
entityByMetadata, which takes a sequence of
metadata (type, value) pairs or an RDQL

statement. The operation returns a list of entities
annotated by metadata matching the query.
Search patterns such as this can also be
combined with standard UDDI-type queries.

3. Authentication in Grimoires
Security for a registry in a distributed
environment is generally concerned with
establishing identity (or role, for a role-based
system) correctly in the authentication process
and using that identity/role to determine access
control decisions to the registry contents. In
UDDIv2 and v3, an arbitrary XML element
termed an authentication token is transmitted by
a user by embedding it within publisher API
calls. This token is intended for use by the
registry in an access control decision. It is
generated by the registry and transmitted to a
user when the user successfully authenticates to
the registry. In implementations such as jUDDI
[4], this initial authentication process is
achieved using a username/password
combination sent via the get_authToken
message. The username/password will map to
an internal identity known to the registry in a
successful authentication, and a suitable
authentication token can then be returned to the
original user.

This username/password authentication
approach however does not scale well for most
Grid environments, which generally require that
identities be determined in a more globally
consistent manner. This is typically achieved
utilizing certificate-based authentication
schemes such as that found in the Globus
Security Infrastructure [1] or OMII [3].

Grimoires is currently deployed within the
OMII framework [3] as a Web Service, using
Apache Axis and Tomcat as the foundational
deploying environment. The OMII framework
provides an implementation of applying digital
signatures to SOAP messages and verifying
these signatures in accordance with WS-
Security standards [2]. The framework can
extract the Distinguished Name (DN) from the
submitted X509 client certificate in an incoming
SOAP call, which can be subsequently used by
the registry in the appropriate access control.
This negates the need for additional
functionality in the registry to generate a new
authentication token to be returned to the user,
as well as the need at the user end to embed this
token in all subsequent publisher API calls.

4. Enhancing access control
assertions
The access control component of a security
architecture for a data store can be policy-
driven. Such a policy would typically contain
assertions, which describe certain restrictions on
granting request to data resources. In many
database implementations, these assertions
assume the form of mappings between
identities and corresponding privileged
operations (such as creating, deleting, etc) that
can be performed on specific portions of a
database.

For the case of a UDDI registry implementation,
there are two major sets of operations that are
offered to potential clients: the inquiry and the
publication API. In the simplest case,
implementing access control functionality
would involve dividing the potential pool of
known clients (i.e. clients that are able of
authenticating successfully to the registry in
question) into groups which are permitted to
perform operations from either one or both of
the two main API sets. This can map in a
straight forward manner to the RBAC
mechanisms (with the groups corresponding to
roles) offered by many database systems.

There is however likely to be a need to further
refine such access control assertions. For
example, it might be desirable in some UDDI
applications to restrict the ability to modify or
delete a registry entry to only the user who
published that entry in the first instance. In the
case of Grimoires, the use of third party
annotations would also in addition introduce the
requirement that a service operator be able to
specify the third parties that are permitted to
publish metadata relating to the original entry of
the service operator. In both cases above,
restricting access solely on the basis of
operations is insufficient; the notion of identities
must be incorporated to some extent in the
access control assertions. In addition, from an
efficiency consideration, these access control
assertions should be articulated directly on
registry entity without the need for an additional
communication between the service publisher
and the registry access control security policy
enforcer. This enhanced ability for the service
publisher to make its own assertions may
however in some circumstances need to be
balanced against the security policies operating
on the registry.

We describe a simple motivating scenario to
illustrate these issues as a context for this paper.
Consider service operators that offer a variety of
tools and services; such parties may welcome
metadata attachments to their registry entries
from users in order to enhance the visibility and
reputation of their tools. Towards this end,
operators would seek to ensure that the users
desiring to annotate their service descriptions
are sufficiently qualified within a given context
to do so. On the other hand, operators could
contrive so that only users partial to their
services are ever allowed to provide
annotations. If it is in the interests of the system
to support a balanced third party view of any
particular service description, then the overall
registry security policy can be modified to
reflect this. For example, the policy could
specify that a specific group of users will
always be allowed or denied annotation
capabilities, regardless of any forthcoming
access control assertions from a given service
operator.

From this sample scenario, we can ascertain two
primary requirements: 1) a means for service
publishers to include access control assertions
relating to their entries, and 2) a way to
reconcile these assertions and those from the
registry security policy in a consistent way so
that potential conflicts do not affect the overall
access control functionality offered. The first
requirement can be satisfied in Grimoires by
specifying an access control assertion in a
suitable format as a metadata attachment to a
registry entity. For example, the identity of the
third parties permitted to further annotate a
service description could be specified in the
metadata at the point when the entity is
published to the registry.

For the second requirement, we have chosen the
XACML [7] framework that supports a
standardized method of expressing access
control assertions as well combining these
assertions from differing policies. XACML is
an XML-based language for access control
policies as well as a request/response language
for expressing queries based on those policies.
We briefly describe XACML in general and
XACML policies specifically in the next
sections and then detail how they are used for
access control in Grimoires.

5. XACML
The policy language in XACML is used to
describe general access control requirements,

and has standard extension points for defining
new functions, data types, combining logic, etc.
The request/response language allows the
formation of a query to ask whether or not a
given action should be allowed, and interpret
the result.

The typical setup involves an individual
requiring some action on a resource. A request
is made to whatever actually protects that
resource (like a filesystem or a web server),
which is called a Policy Enforcement Point
(PEP). The PEP forms a request based on the
requester's attributes (such as the requester’s
identity, assigned group, etc), the resource in
question, the action, and other information
pertaining to the request. The PEP then sends
this request to a Policy Decision Point (PDP),
which looks at the request, finds some policy
that applies to the request, and applies it
accordingly. The evaluation result is returned to
the PEP, which can then allow or deny access to
the requester.

6. XACML policies
A policy is a combination of several
subcomponents: target, rules, rule-combining
algorithm, and obligations. The functionality of
these subcomponents are as follows:

Target. Each policy has only one target, which
determines whether the policy is relevant for the
request. This is achieved by defining attributes
of three categories in the target: subject,
resource, and action, along with their values.
The values of these attributes are compared with
the values of the same attributes in the request;
if they match according to some specified
function, then the policy is considered relevant
to the request and is evaluated.

Rules. Multiple rules can be associated to a
policy. Each rule is composed of a condition, an
effect, and a target. Conditions are statements
about attributes that upon evaluation return
either True, False, or Indeterminate. Effect is
the intended consequence of the satisfied rule. It
can either take the value Permit or Deny.
Target, as in the case of a policy, helps in
determining whether or not a rule is relevant for
a request. The mechanism for achieving this is
also similar to how it is done in the case of a
target for a policy. The final outcome of the rule
depends on the condition evaluation.

Rule-combining algorithm: A policy can have
multiple rules. It is possible for different rules to

generate conflicting results. Rule-combining
algorithms are responsible for resolving such
conflicts to arrive at one outcome per policy per
request. XACML defines the following rule-
combining algorithms (permitting for user-
defined combinations as well):

• Deny-overrides: If any rule evaluates
to Deny, then the final authorization
decision is also Deny.

• Ordered-deny-overrides: Same as
deny-overrides, except the order in
which relevant rules are evaluated is
the same as the order in which they are
added in the policy.

• Permit-overrides: If any rule evaluates
to Permit, then the final authorization
decision is also Permit.

• Ordered-permit-overrides: Same as
permit-overrides, except the order in
which relevant rules are evaluated is
the same as the order in which they are
added in the policy.

• First-applicable: The result of the first
relevant rule encountered is the final
authorization decision as well.

With reference to the example scenario that we
introduced in Section 4, a situation might arise
where the registry operator may desire to
ensure that users from a specific organization
are always banned from making third party
annotations, regardless of any assertions from
the individual service publishers. Here, the
primary policy to be evaluated will initially
contain the rule that expresses the desired
constraint on the specific users. Subsequent
rules appended to the policy will be derived
from the security assertions provided by service
publishers. By specifying the ordered-deny-
overrides mode of rule combining, the
evaluation of the policy will always ensure that
the designated users will always be banned
regardless of any assertions made by the service
operators.

7. XACML access control in
Grimoires

We utilize the example that we had described in
Section 4 to demonstrate a simple example of
XACML based access control in Grimoires.
This example is detailed in relation to the
security infrastructure of Grimoires shown in
Fig. 1.

Fig 1. Grimoires security infrastructure.

We consider a simple scenario where all
authenticated individuals known to the registry
are divided into several groups or roles; each
role being permitted a specific set of registry
operations on metadata attachments and registry
entries. This is expressed in XACML as a
registry wide policy that applies to all incoming
requests. Assume a user attempts to publish a
new businessService entity to the registry
through a save_service API call. In the OMII
framework, the outgoing UDDI SOAP message
contents are signed with the user’s private key
utilizing the OMII client side libraries, and
appended to the SOAP message in accordance
with WS-Security standards. At the container
end, the signature is verified and the X500DN is
extracted and passed over to the pre-processor,
which is implemented as an Axis handler.

The pre-processor then determines validity of
the X500DN identity within the context of the
registry security domain, maps the X500DN to
an assigned role and formulates an appropriate
XACML request from the SOAP message. It
effectively implements the PEP functionality
within the XACML architecture configuration.
The XACML request, along with the original
message contents, are passed onwards to the
access control engine. This engine provides the
PDP functionality of evaluating the
permissibility of the request. If the assigned role
is permitted the requested save_service
operation, a check is first made to ensure that no
entities with the same key already exist in the
registry. Once this is achieved, a
businessService entity is created in the RDF
backend store and a corresponding key is
returned to the invoking user. At the same time,
a new default metadata attachment for this
entity is created consisting of a single XACML
rule fragment that specifies that all future
publish and metadata API operations on this
entity is confined only to the requests
originating from the X500DN of this entity.

Consider now a second user (with a different
X500DN) that wishes to annotate this newly
published entity via a metadata attachment. The
incoming request from this user is processed in
the same manner as previously up until the point
when the access control engine ascertains that
the entity already exists. In this case, it retrieves
all related metadata attachments for the entity
consisting of XACML fragments (one at this
period of time) and accumulates them into a
single policy. The request then is evaluated by
combining the original registry wide policy with
this dynamically constructed policy. Here, the
requested operation will be denied as the newly
constructed policy restricts all metadata
operations to the original publisher. This
original publisher could broaden the access

rights by simply publishing further XACML
rule fragments which specify different groups or
users permitted to perform specific metadata,
publish or inquiry operations. In a situation like
this where there are multiple rules to be
evaluated in combination, the publisher could
also specify the actual XACML rule combining
algorithm to be used as a separate metadata
attachment.

To ensure consistency in combining the registry
policy and the constructed policy, the registry
administrator can seek to impose an appropriate
policy combining algorithm. For example,

setting the PolicyCombiningAlgId to Ordered-
Deny-Overrides and evaluating the registry
policy first in this combination mode, ensures
that any restrictions expressed there always
takes precedence regardless of any other
assertions in the dynamically constructed
policy. Thus, if a metadata XACML rule
fragment asserts that a certain user is permitted
to perform a specific metadata operation but the
operation is forbidden to the group that the user
is classified in, then a request from that user for
this operation will be denied. The registry
policy and the combination rule is published as
a separate entity description in the registry that
is accessible to all potential users, who can
decide accordingly on how to make appropriate
security assertions in order to provide the

desired level of access control on entities owned
by them.

<Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">GoodGroup</AttributeValue>
 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:role"
DataType="http://www.w3.org/2001/XMLSchema#string"/>
 </SubjectMatch>
 </Subject>
</Subjects>

<Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">addMetadataToEntity</AttributeValue>
 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">deleteMetadata</AttributeValue>
 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
</Actions>

Fig. 2 Initial registry policy

An example of a rule in a system wide policy is
shown in Fig. 2. Here a XACML request
pertaining to the GoodGroup role is permitted to
perform addMetadataToEntity and
deleteMetadata operations. The policy may
alternatively contain a list of other rules as well
that articulate further restrictions on specific
types of operations permissible to registry
entries. An example of a XACML rule fragment
is shown in Fig. 3. Here, a specific X500 CN
identity is permitted to perform the operation of

addMetadataToEntity. The entire fragment is
expressed as the object value of the RDF triple
that constitutes a single metadata attachment.

An example of XACML request requesting the
attachment of a metadata entry to a service
entity with the key value of 12345 is shown in
Fig. 4. This request is created from the UDDI

message contents by the pre-processor.

<Rule RuleId="PermitRule" Effect="Permit">
 <Target>
 <Subjects>
 <Subject>
 <SubjectMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name-match">
 <AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">CN=Bart
Simpson</AttributeValue>
 <SubjectAttributeDesignator AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name"/>
 </SubjectMatch>
 </Subject>
 </Subjects>

 <Actions>
 <Action>
 <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
 <AttributeValue
DataType="http://www.w3.org/2001/XMLSchema#string">addMetadataToEntity</AttributeValue>
 <ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string"
AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>
 </ActionMatch>
 </Action>
 </Actions>
 </Target>
</Rule>

Fig. 3 XACML rule fragments as metadata attachments

8. Conclusion
In this paper, we briefly describe the features of
the Grimoires registry which include support for

<Request>
 <Subject>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id" DataType="xs:string" Issuer="registry.com">
 <AttributeValue>CN=John Doe</AttributeValue>
 </Attribute>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:subject:name-format" DataType="xs:anyURI">
 <AttributeValue>urn:oasis:names:tc:xacml:1.0:datatype:x500name</AttributeValue>
 </Attribute>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:2.0:example:attribute:role" DataType="xs:string" Issuer="registry.com">
 <AttributeValue>GoodGroup</AttributeValue>
 </Attribute>
 </Subject>

 <Resource>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www.w3.org/2001/XMLSchema#anyURI">
 <AttributeValue>12345</AttributeValue>
 </Attribute>
 </Resource>

 <Action>
 <Attribute AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#string">
 <AttributeValue>addMetadataToEntity</AttributeValue>
 </Attribute>
 </Action>
</Request>

Fig. 4 XACML request

metadata attachments and third party
annotation. A scenario that describes the
motivating security requirements for such a
registry is presented. We then briefly present
XACML as an approach to implementing the
access control engine for the engine towards
fulfilling the required security requirements. A
sample scenario illustrating how XACML
policies and rules can be applied within the
security infrastructure is described. We believe
the approach of permitting users to specify
security assertions pertaining to data owned by
them represents a useful way forward towards
articulating more flexible access control
requirements domains involving large number
of users with disparate security requirements.

Future work in this area could look at
examining more standard ways of providing
security assertions as metadata attachments. In
addition to arbitrary XML fragments or direct
XACML rules, it might be interesting to
examine the use of SAML assertions in line
with the SAML-XACML mapping profile in the
XACML standard. The XACML-RBAC
mapping profile could be used as a guide
towards implementing a more comprehensive
form of role based access control to supplant the
simple identity-to-group mapping implemented
by the pre-processor in the security architecture.

9. Acknowledgments

This research is funded in part by the Grimoires
(EPSRC Grant GR/S90843/01) and myGrid
(EPSRC Grant GR/R67743/01) projects.

REFERENCES

[1] The Globus Alliance.
http://www.globus.org/.
[2] Web Services Security (WSS).
http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss.
[3] Open Middleware Infrastructure Institute.
http://www.omii.ac.uk/.
[4] An open source java implementation of the
universal description, discovery, and integration
(UDDI) specification for web services.
http://ws.apache.org/juddi/.
[5] W3C. Rdf primer. http://www.w3.org/TR/
rdf-primer/, 2004.
[6] R. Stevens, A. Robinson, and C.A. Goble.
myGrid: Personalised Bioinformatics on the
Information Grid. Proceedings of 11th
International Conference on Intelligent Systems

in Molecular Biology, Brisbane, Australia.
Bioinformatics Vol. 19 Suppl. 1 2003, i302-
i304
[7] XACML. Extensible Access Control
Markup Language. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=
xacml

	Abstract

	Introduction

	Using metadata for registry publications

	Authentication in Grimoires

	Enhancing access control assertions

	XACML

	XACML policies

	XACML access control in Grimoires

	Conclusion

	Acknowledgements

	References

