
Performance Analysis of a Semantics Enabled Service
Registry

Weijian Fang Sylvia C. Wong Victor Tan Simon Miles Luc Moreau
School of Electronics and Computer Science

University of Southampton
wf@ecs.soton.ac.uk

Abstract

Service discovery is a critical task in service-oriented architectures such as the Grid and Web
Services. In this paper, we study a semantics enabled service registry,GRIMOIRES, from a perfor-
mance perspective.GRIMOIRES is designed to be the registry for myGrid and the OMII software
distribution. We study the scalability ofGRIMOIRES against the amount of information that has
been published into it. The methodology we use and the data we present are helpful for researchers
to understand the performance characteristics of the registry and, more generally, of semantics en-
abled service discovery. Based on this experimentation, we claim thatGRIMOIRES is an efficient
semantics-aware service discovery engine.

1 Introduction

Service discovery is a critical task in service-
oriented architectures such as the Grid and Web Ser-
vices. The challenges are the following: (1) since the
heterogeneity of information models is inherent to
such large scale, distributed systems, it is important
to guarantee interoperability among different infor-
mation models in service discovery; (2) given that
the service usage information is a valuable search
criterion, it is very helpful for both service providers
and service consumers to have the capability to an-
notate a published service with such usage informa-
tion as well as to search a service based on a cer-
tain annotation; and (3) since there are potentially a
large number of services advertised, it is difficult to
efficiently and precisely locate the most suitable one
based on user provided criteria.

To address these challenges, we are design-
ing and developing a registry calledGRI-
MOIRES (www.grimoires.org) for the myGrid
project (www.mygrid.org.uk) and the Open Mid-
dleware Infrastructure Institute (www.omii.ac.uk).
To address the first challenge,GRIMOIRES supports
semantic discoveryby representing all published
information in the form of RDF triples. Thus
potentially they can be reasoned over using ontol-
ogy models to enforce the interoperability among
various service description models. To address the
second challenge,GRIMOIRES supports metadata
attachment to service adverts by both service
providers and consumers [9]. Further descriptions
of services, such as the quality of a service, or the

semantic type of the input of a service operation, can
be added as annotations to facilitate future service
discovery. We argue that metadata annotation can
provide more informative descriptions of published
services in an extensible way, so that discovery
based on metadata helps improve the efficiency and
accuracy of service discovery, thus addressing the
third challenge.

In this paper, we study theGRIMOIRES approach
from the perspective of performance. In particular,
we analyze the scalability ofGRIMOIRESagainst the
amount of information published into it.

We have conducted extensive experiments
to study the performance of GRIMOIRES.
The experiments include (1) the performance
comparison betweenGRIMOIRES and jUDDI
(ws.apache.org/juddi), an open source standard
UDDI registry, to study the overhead of represent-
ing published information in the form of RDF triples
and supporting metadata-based discovery; (2) the
memory usage ofGRIMOIRES; (3) GRIMOIRES’
performance using various persistent stores; (4)
GRIMOIRES’ performance under the security frame-
work specified by WS-Security [8] and related
specifications; and (5) the performance breakdown
of semantic service publication and metadata-based
discovery.

Our contributions are:

1. We report on the performance of a service reg-
istry that supports semantic discovery. Since
the registry is the core component of a service-
oriented architecture, our performance analysis

1

is of significant interest for researchers in this
area to understand the performance character-
istics of the registry and semantics enabled ser-
vice discovery. To the best of our knowledge,
this is the first performance report of a seman-
tics enabled service registry.

2. We propose a methodology to study the scal-
ability of service publication and inquiry per-
formance with respect to the registry data size.
The same methodology is also applied to mea-
sure the performance of attaching, updating,
and deleting metadata to published services.

3. Based on such performance analysis, we
demonstrate that theGRIMOIRES approach is
an efficient semantic service discovery solution
in a service-oriented architecture.

The rest of the paper is organized as follows.
Section 2 discusses the related work. Section 3
presentsGRIMOIRES’ approach towards semantics-
enable service publication and discovery. Section 4
introduces our methodology to investigate the reg-
istry performance. Section 5 presents the experiment
results and gives a detailed analysis. Finally, we give
the conclusion and future work.

2 Related work

The UDDI service directory (Universal Description,
Discovery, and Integration) [6] has become the de-
facto standard for service discovery in the Web Ser-
vices Architecture. Service queries are typically
white or yellow pages based: services are located
based on a description of their provider or a spe-
cific classification (taken from a published taxon-
omy) of the service type. Service descriptions in
UDDI are composed from a limited set of high-level
data constructs (Business Entity, Business Service,
etc.) that can include other constructs following a
rigid schema. However, UDDI does not provide
enough support to annotate a published service, or
to discover a service based on annotated metadata.
While UDDI provides ways to attach a form of meta-
data to a service advert through the use of tMod-
els, by recording the URL of metadata in tModels,
the metadata itself is not saved in the registry. Thus
UDDI lacks the capability of inquiry by the content
of any metadata. UDDI also does not allow service
consumers to attach metadata to a published service.
The WSDL language is the standard way to define
the technical interface of Web Services. In UDDI,
tModels are used to link a WSDL interface to a ser-
vice by recording the URL of an external WSDL file.
UDDI does not provide the capability for users to
annotate an element of its technical interface, or to

search a service based on a certain characteristic of
its technical interface. For instance, UDDI does not
allow users to qualify the input of one operation of
a Web Service with a semantic type. Such a seman-
tic type would provide a description of the input in
terms of the application’s semantics rather than the
type encoded in the SOAP message.

There are several other service description mod-
els than UDDI. For instance, OWL-S [10], formerly
DAML-S, uses the OWL web ontology language
to describe a Web Service from three component
perspectives: what it does (service profile), how it
works (service model), and how to access it (service
grounding). Biomoby [11] defines a service as an
atomic process or operation that takes a set of inputs
and produces a set of outputs. In Biomoby, the ser-
vice, inputs, and outputs can all take semantic types;
inputs and outputs also have syntactic types.

The Globus Toolkit (www.globus.org) provides
the Monitoring and Discovery System (MDS), con-
sisting of a suite of Web Services, to monitor and
discover resources and services on Grids. MDS fo-
cuses on the mechanism to disseminate and gather
information on Grids rather than the information
model to describe services or resources. Each in-
formation source publishes information in XML ac-
cording to some schema. The GLUE schema [12]
is used for compute information. But the authors of
the information sources or the grid resources, have
the freedom to define their schema, so that arbi-
trary XML data can be published to describe ser-
vice profiles and states. The XPath language is used
for inquiry. We consider MDS as a complement
to GRIMOIRES in terms that MDS can be used as
an automatic service information collector forGRI-
MOIRES registry.

3 GRIMOIRESapproach

GRIMOIRESis a UDDIv2 compliant registry for Web
Services, which itself is implemented as a Web Ser-
vice, shown in figure 1. The clients interact with
GRIMOIRES through sending and receiving SOAP
messages. In addition to the UDDIv2 interface,
GRIMOIRES also provides some other interfaces,
such as metadata and WSDL, which allow clients
to publish and inquire metadata and WSDL-related
data, respectively. An access control layer within
GRIMOIRESenforces fine-grained access control for
each published entity, which could be a UDDI ser-
vice, a piece of metadata, or a WSDL description.
All the data published through various interfaces are
represented as RDF triples internally, which can be
queried and reasoned over in a uniform way. The
published data, i.e., the RDF triples, can reside in a

2

Web Service Container

Client

SOAP Messages

UDDIv2 Metadata WSDL ...
Access Control

RDF Publication/Inquiry

RDBMS File Memory

Figure 1: The architecture ofGRIMOIRES

database, a file, or simply in memory, to allow de-
ployers to balance persistence with performance.

From the functionality perspective, GRI-
MOIRES has the following features.

Registration of semantic descriptions GRI-
MOIRES has the ability to publish and inquire over
metadata. Metadata are extra pieces of data giv-
ing information about existing entities in the reg-
istry. Currently, entities to which metadata can be
attached are UDDI BusinessEntity, BusinessService,
tModel, BindingTemplate, and WSDL operation and
message part.

A piece of metadata is in the form of an RDF
triple: the subject is the entity to be annotated, the
predicate is the type of the relationship, and the
object is the value. The metadata value can be a
string, a URI, or structured data in RDF. For ex-
ample, to describe the quality of a service, the pair
(mygrid:NumericRating, 8.5) can be used for the re-
lationship and value of metadata attachment, which
assigns a rating of 8.5 to the service.

A unique key is assigned to every piece of meta-
data published. Therefore, metadata attachments can
be updated without republishing the service. This
presents an efficient way of capturing ephemeral in-
formation about services that changes often, such as
the current load of a service.

Multiple metadata attachments There is no
limit to the number of attachments each entity can
have. Since each piece of metadata has its own
unique key, it can be updated without republishing
other metadata attached to the same entity.

Third party annotations The ability to publish
metadata is available to both service providers and
third parties. This provides the flexibility of allow-
ing users with expert knowledge to enrich service

descriptions in ways that might not be conceivable
to the original publishers. For instance, users can
provide their personal ratings on services.

Inquiry with metadata Multiple search patterns
are supported inGRIMOIRES. An entity can be found
according to a metadata expressed as either a se-
quence of (type, value) pairs or an RDQL statement.
The operation returns a list of entities annotated by
metadata matching the query. To support queries
over both metadata and non-metadata (such as the
name of a service), we have extended the UDDI ser-
vice finding operation with similar metadata query
facility.

Signature based authenticationUDDIv2 and v3
specifications rely primarily on the use of authenti-
cation tokens to authenticate users for publisher API
calls. In implementations such as jUDDI [4], this
is generally achieved through a username/password
credential scheme. However, this authentication
method does not scale well for most Grid environ-
ments, which typically use certificate-based authen-
tication schemes. The OMII framework provides
an implementation of SOAP message signing and
verification in accordance with WS-Security stan-
dards [8]. When deployed within the OMII con-
tainer, GRIMOIRES can extract the Distinguished
Name (DN) from the submitted X509 client cer-
tificate for authentication purposes. Incorporating
signature usage in this way makes it easier to inte-
grateGRIMOIRES into existing Grid security infras-
tructures, as well as providing an important building
block for single sign-on capabilities, an important
requirement for many Grid applications.

Access controlAccess control is on the basis of
authenticated identity, and is applied on the granu-
larity of each registered data entry, e.g., a service, a
WSDL file, or a piece of metadata. The access con-
trol assertions are represented as metadata and are
attached to the corresponding data entries.

4 Experiment methodology

In a service registry, two fundamental operations are
service publication and service discovery. It is in-
teresting to know the overhead of individual publi-
cation and discovery operations with respect to the
data size of the registry. We want to investigate to
what extent the publication and discovery overheads
are affected when an increasing amount of data is
registered intoGRIMOIRES.

In this test, we use UDDI data model to describe
a Web Service. In order to publish a UDDI service,
three steps need to be performed:

1. Publish a UDDI business hosting the service by
invoking thesave business operation,

3

2. Publish a UDDI tModel recording the URL of
the service’s technical interface by invoking the
save tModel operation, and

3. Publish a UDDI service by invoking the
save service operation, referring to the
previously published business and tModel.

Two steps are involved in querying a UDDI ser-
vice:

1. Find a service by its name by invoking the
find service operation, and

2. Retrieve the service detail by invoking
the get serviceDetail operation,
whose input is the service key returned by
find service .

All the above operations are defined in the UDDI
API specification. Each step can be either a Web
Service invocation which incurs a pair of SOAP
messages (request and response), or a Java method
invocation in the business logic test.

In the test, we repeat the following procedure:

1. Publish 100 services. Each published service
has its unique service description.

2. Among all the services currently registered in
GRIMOIRES, randomly choose 100 services to
query. To do this, the test client maintains a
name list for all the registered services.

Using the above method, we measure the ser-
vice publication and discovery performance ofGRI-
MOIRES against the registry data size under vari-
ous settings, to investigate the scalability ofGRI-
MOIRES with respect to the number of services pub-
lished.

5 Performance analysis

Except where stated otherwise,GRIMOIRES runs on
a computer of Intel P4 3GHz CPU, with 2GB mem-
ory. GRIMOIRES is a Java application. Sun JDK SE
1.4.2 is used. The JVM heap size is set to 1G when
runningGRIMOIRES either as a standalone applica-
tion in the business logic test, or as a Web Service
deployed in a Web Service container such as Apache
Axis. In these experiments, we follow the method-
ology described in the previous section.

5.1 GRIMOIRES vs. jUDDI

jUDDI (ws.apache.org/juddi) is an open source stan-
dard UDDI registry, but it does not offer specific
support for metadata-based discovery. By compar-
ing the performance ofGRIMOIRES and jUDDI, we

 0.1

 1

 10

 100

 1000

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
on

d)

Number of services

Publishing 100 Services against Registry Data Size

GRIMOIRES, WS
GRIMOIRES, BL

jUDDI 0.9rc4

Figure 2: Publication overhead against registry data
size

 0.1

 1

 10

 100

 0 5000 10000 15000 20000 25000

T
im

e
(s

ec
on

d)

Number of services

Inquiring 100 Services against Registry Data Size

GRIMOIRES, WS
GRIMOIRES, BL

jUDDI 0.9rc4
Inquiry-By-Metadata

Figure 3: Inquiry overhead against registry data size

are able to study the overhead of representing pub-
lished information in the form of RDF triples and
supporting metadata-based discovery.

Figure 2 and figure 3 show the performance of
publication and inquiry ofGRIMOIRES and jUDDI
against registry data size, respectively. Note that the
curves show the overhead of publishing or inquir-
ing 100 services. In the legends, BL denotes the
business logic performance that is measured by di-
rectly invoking the business logic ofGRIMOIRES,
whereas WS denotes the Web Service performance
that is measured by interacting withGRIMOIRESus-
ing SOAP messages. The difference between them
is the overhead incurred in the SOAP engine. Ta-

Publish Inquire
GRIMOIRESWS 37.8 56.9
GRIMOIRESBL 13.2 40.2

jUDDI 226.3 38

Table 1: The time (in millisecond) to publish and
inquire a service when there are 2000 services in the
registry

4

 0

 200

 400

 600

 800

 1000

 1200

 0 5000 10000 15000 20000 25000

H
ea

p
us

ag
e

(M
B

)

Number of services

Heap Usage against Registry Data Size

Figure 4: Heap usage against registry data size

ble 1 shows the time to publish and inquire a service
when there are 2000 services in the registry for vari-
ous experiment configurations.

GRIMOIRESsaves all published information in the
memory, which greatly improves the performance
compared with saving information to some persis-
tent store such as a database. The memory usage of
GRIMOIRES is studied in the later section.

All service information and metadata attached are
represented by RDF triples, which are saved to and
later retrieved from a triple store withinGRIMOIRES.
The performance of the triple store is critical to the
performance ofGRIMOIRES. We are using the latest
Jena [5] inGRIMOIRES. We observe to some extent
Jena’s performance does not scale well when a large
number of RDF triples are published.

The publication overhead ofGRIMOIRES is much
better than that of jUDDI because jUDDI uses a
database, PostgreSQL 8.0.1, as a persistent store,
while GRIMOIRES stores all information in mem-
ory. The performance ofGRIMOIRESwith persistent
stores is discussed in section 5.3.

The inquiry overhead ofGRIMOIRES is about
twice as that of jUDDI when 5000 services pub-
lished. To reduce this overhead, we are currently
evaluating various RDF stores. Preliminary promis-
ing investigations indicate that a more efficient RDF
store would bring the inquiry performance ofGRI-
MOIRES to a level comparable to that of jUDDI. In-
terestingly, the RDF triple store, which introduces
some penalty cost, offersGRIMOIRES capabilities
that are not supported by jUDDI: in figure 3, we also
show the performance of inquiry by metadata. This
capability is not available in the UDDI specification.

5.2 Memory usage

Figure 4 shows the heap usage ofGRIMOIRES’ busi-
ness logic when using memory as the RDF triple
store. It requires about 8 megabytes for 100 ser-

 120

 140

 160

 180

 200

 220

 240

 260

 0 5000 10000 15000 20000 25000

Number of services

Number of Minor Garbage Collections against Registry Data Size

Figure 5: Number of minor garbage collections
against registry data size

vices, and 800 megabytes memory for 20000 ser-
vices. Publishing one service adds 138 RDF state-
ments to the triple store, which consume up about
40 kilobytes memory. We argue that this memory re-
quirement can easily be satisfied on today’s servers
or even PCs, and the number of services contained
in this amount of memory can meet the requirement
of most environments. For example, the number of
services in myGrid is in the scale of thousands.

Figure 5 shows the number of minor garbage col-
lections incurred when using memory as the RDF
triple store. Sun JDK 1.4.2 uses a generational
garbage collector by default. A minor collection col-
lects the young generation only, and a major collec-
tion also collects the tenured generation. When there
is enough allocatable memory in the heap, a typi-
cal minor collection takes about one to a few mil-
liseconds, and a typical major collection takes about
tens of milliseconds to one second. During the ex-
periment, there are only 19 major collections, 9 of
which occurred during the very beginning part of
the experiment. Comparing the overhead of a mi-
nor collection and that of service publication and in-
quiry, it can be observed that the disruption caused
by garbage collection is not serious under the condi-
tion that there is enough allocatable memory in the
heap.

5.3 Performance with persistent stores

It is important for the registry to be persistent, so that
the contents of the registry is not lost at the moment
of a crash. The persistence ofGRIMOIRES relies
on that of the RDF triple store used inGRIMOIRES.
Currently,GRIMOIRES uses Jena as the triple store.
Jena can be made persistent in different ways, e.g.,
by using a relational database, a file-based hash ta-
ble, or simply a plain text file to store the triples.
In this experiment,GRIMOIRES’ performance with

5

 0.1

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

T
im

e
(s

ec
on

d)

Number of services

Publishing 100 Services against Registry Data Size

PostgreSQL 8.0.1
BDB JE

File
Memory

Figure 6: Publication performance with persistent
stores

 0.1

 1

 10

 100

 1000

 0 500 1000 1500 2000 2500

T
im

e
(s

ec
on

d)

Number of services

Inquiring 100 Services against Registry Data Size

PostgreSQL 8.0.1
BDB JE

File
Memory

Figure 7: Inquiry performance with persistent stores

the persistence support is measured. Figure 6 and
7 show the publication and inquiry performance of
GRIMOIRES with the persistence support, respec-
tively.

In this experiment, we use two persistent stores,
PostgreSQL and Berkeley DB Java Edition (BDB
JE). PostgreSQL is an open source object-relational
database management system widely used in pro-
duction environments. BDB JE is a data store
embedded in applications rather than a relational
database engine. PostgreSQL is more efficient than
BDB JE for inquiry, but slower than BDB JE for
publication. Compared with the performance of
GRIMOIRES using memory as the triple store, the
publication and inquiry overheads using both Post-
greSQL and BDB JE are far more expensive.

Another way forGRIMOIRES to provide data per-
sistence is to use a file as the back end of the triple
store. We design a checkpointing scheme inGRI-
MOIRES, which logs in the file the deleted and added
triples before they are actually committed into the
triple store. In case of a registry crash, the registry
contents before the crash can be restored by replay-
ing the addition and deletion operations based on the

 0

 50

 100

 150

 200

 250

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
on

d)

Number of services

Publishing 100 Services against Registry Data Size

SOAP message signed
SOAP message not signed

Figure 8: Publication overhead with WS-Security

logged data in the same sequence as they are logged.
This file-based checkpointing scheme does not affect
the inquiry performance, but significantly increases
the publication overhead.

Table 2 shows the time to publish and inquire a
service when there are 2000 services in the registry
for various triple store configurations.

5.4 Performance with WS-Security

In this experiment, we measureGRIMOIRES’ per-
formance under the framework of WS-Security [8].
The experiment is conducted on a computer using an
Intel P4 2.4GHz CPU and 1GB memory.

The OMII environment provides the functionali-
ties of creating X.509v3 certificate based signatures
on outgoing client-side SOAP messages, and veri-
fying these signatures on server-side Web Services
deployed in the OMII container. Signatures are cre-
ated and verified respectively through the client-side
and server-side handler, which intercept SOAP mes-
sages and process them in a way transparent to the
client and the service.

We deployGRIMOIRES in OMII 1.2.0 container
and measure its performance adopting the same
methodology, with signing of SOAP messages both
disabled and enabled. Figure 8 shows the publica-
tion overhead, and figure 9 shows the inquiry over-
head. As seen from the figures, the signing and veri-
fying of SOAP messages introduces a big overhead.

Publish Inquire
PostgreSQL 37,066.3 2,172.8

BDB JE 5,919.9 6,862.4
Memory 13.2 40.2

File 62.4 42.7

Table 2: The time (in millisecond) to publish and
inquire a service when there are 2000 services in the
registry

6

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
im

e
(s

ec
on

d)

Number of services

Inquiring 100 Services against Registry Data Size

SOAP message signed
SOAP message not signed

Figure 9: Inquiry overhead with WS-Security

Publish Inquire
Signed 1,531.8 987

Not signed 88.3 98.9

Table 3: The time (in millisecond) to publish and
inquire a service when there are 2000 services in the
registry

Table 3 shows the time to publish and inquire a
service when there are 2000 services in the registry.
As seen in the table, the signing of SOAP message
has a larger impact on the publication overhead than
on the inquiry overhead. This is because there are 3
Web Service interactions incurred during the publi-
cation, and only 2 during the inquiry. The overhead
due to SOAP message signing during the publica-
tion, i.e., the difference between when signing is en-
abled and when signing is disabled, is roughly 1.5
times of that during the inquiry.

5.5 Performance breakdown of semantic ser-
vice publication and discovery

In this experiment, one piece of metadata is added
to each service. All the metadata are of the same
annotation type, but with different values. Services
are discovered according to the attached metadata.

Figure 10 demonstrates the performance of se-
mantic service publication. We further breakdown
the overhead of semantic service publication into
several steps, which include publishing the WSDL
file that defines its technical specification1, publish-
ing its general information such as name and organi-
zation that are represented by UDDI data model, and
attaching metadata to the service. In the experiment,
we intentionally publish, republish, and then delete
the metadata to measure the metadata-related perfor-
mance against the registry data size. We observe that

1In previous experiments, we do not publish the WSDL file of
the service.

Semantically Publishing 100 Services Against Registry Data Size

0

10

20

30

40

50

60

0 5000 10000 15000 20000 25000

Number of services

T
im

e
(s

ec
on

d)

Delete metadata

Update metadata

Attach metadata

Publish service

Publish WSDL

Figure 10: Breakdown of the performance of seman-
tic service publication

Publish WSDL 33.5
Publish service 31.2
Attach metadata 11.7
Update metadata 12.3
Delete metadata 9.1

Inquiry by metadata 80.5

Table 4: The overheads (in millisecond) of
metadata-related operations when there are 2000 ser-
vices in the registry

publishing, updating, and deleting metadata are effi-
cient operations.

In figure 3, we observe that the performance of
inquiry by metadata is a little more expensive than
the standard UDDI inquiry because the structure of
its query statement is more complicated.

Table 4 shows the overheads of metadata-related
operations when there are 2000 services in the reg-
istry.

6 Conclusion and future work

In this paper, we studyGRIMOIRES, a seman-
tics enabled service registry, from the performance
perspective. We study the scalability ofGRI-
MOIRES against the amount of information pub-
lished. Based on this experimentation, we claim that
GRIMOIRES is an efficient semantics-aware service
discovery engine.

We are investigating the life cycle management of
published data inGRIMOIRES. We plan to adopt a
soft state protocol, so that the data will expire after
its predefined life time. In this way, the stale data in
the registry can be removed automatically.

We are also investigating the notification mech-
anism inGRIMOIRES. When a published entity is
updated,GRIMOIRES users who are interested in it,

7

will receive a notification of change. The notifica-
tion can be a SOAP message or simply an Email.
Users need to register correspondingly in order to re-
ceive the notifications. The notification mechanism
can be a complement to service discovery, since it
can be used to track a service after the service is dis-
covered.

7 Acknowledgements

This research is funded in part by theGRI-
MOIRES(EPSRC Grant GR/S90843/01) and myGrid
(EPSRC Grant GR/R67743/01) projects.

References

[1] GRIMOIRES project. http://www.
grimoires.org/ .

[2] myGrid project. http://www.mygrid.
org.uk .

[3] Open middleware infrastructure institute.
http://www.omii.ac.uk/ .

[4] jUDDI 0.9rc4.http://ws.apache.org/
juddi/ .

[5] Jena Semantic Web Framework.http://
jena.sourceforge.net/ .

[6] UDDI Version 2.04 API Specification.http:
//uddi.org/pubs/ProgrammersAPI\
-V2.04\-Published\-20020719.
htm .

[7] WWW Consortium. RDF Primer.http://
www.w3.org/TR/rdf-primer/ .

[8] Oasis Web Services Security (WSS).
http://www.oasis-open.org/
committees/tc_home.php?wg\
_abbrev=wss .

[9] Simon Miles, Juri Papay, Terry Payne, Keith
Decker, and Luc Moreau. Towards a Protocol
for the Attachment of Semantic Descriptions to
Grid Services.In The Second European across
Grids Conference, Nicosia, Cyprus, pages 10,
January 2004.

[10] OWL-S. http://www.daml.org/
services/owl-s/ .

[11] MD Wilkinson and M. Links. Biomoby: an
open-source biological web services proposal.
Briefings In Bioinformatics, 4(3), 2002.

[12] The GLUE schema.http://www.cnaf.
infn.it/˜sergio/datatag/glue/

8

	Abstract

	Introduction

	Related Work

	GRIMOIRES approach

	Experiment methodology

	Performance analysis

	Conclusion and future work

	Acknowledgements

	References

