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Abstract

Applications that require a robot to cover an
area can be described as complete coverage
navigation tasks. Examples of this type of nav-
igation are vacuuming, surface coating, and
systematic foraging. Performance measures
are often neglected in this area of research.
This paper presents two metrics for measur-
ing performance of robot coverage tasks and
applied them to a real robot coverage exper-
iment. The first metric measures percentage
of coverage using computer vision techniques.
The second metric uses distance travelled by
the robot. It is found that percentage of cover-
age is a good performance indicator if physical
limitations of the robot is taken into account;
while distance travelled by itself is a poor indi-
cator because it completely ignores the amount
of area covered.

1 Introduction

In tasks such as vacuum cleaning, painting and land-
mine searching, a mobile robot must visit all reachable
floor surface in an enclosed region. This type of naviga-
tion can be described as complete coverage navigation.
Here, a robot carries out a coverage task that ensures
no area is missed.

It is important to have a measure on how well
the algorithm performs. Generally, the mesurement
of performance is well studied in the area of locali-
sation [Duckett and Nehmzow, 1998, Nehmzow, 2001].
However, this is often neglected in discussion of re-
search on robot coverage navigation. For exam-
ple, [Acar et al., 2001] and [Butler et al., 1999] gave
only a theoretical analysis of their algorithms. Oth-
ers opted to include diagrams showing how a
given environment might be covered by their al-
gorithms [González et al., 1996, Luo and Yang, 2001,
Zelinsky et al., 1993].

The important performance measures of this type of
algorithm are the effectiveness and the efficiency of cov-
erage. In [Gabriely and Rimon, 2002], the simulated

test environment was divided into equal sized cells.
The effectiveness of coverage was then measured as the
ratio of the number of cells that were visited at least
once over the total number of unoccupied cells. For ex-
periments on real robots, [Ulrich et al., 1997] covered
the test area with sawdust and estimated the amount
of sawdust left afterwards. This requires the test plat-
form to be equipped with a dustbuster. It is also error
prone as estimation of the amount of dust is not an
easy task.

For efficiency of coverage in simulation,
[Gabriely and Rimon, 2002] defined any cells that
were repeatedly covered as undesirable and thus a
good solution would minimise the amount of repeated
coverage. This concept of repeated visits was also
mentioned in [Zelinsky et al., 1993]. No reference can
be found for efficiency measures for experiments on
real robots.

This paper presents two methods for measuring the
performance of complete coverage algorithms that can
be used for the research we are doing in this area.
Section 3 describes a method to measure percentage
of coverage (effectiveness) using computer vision tech-
niques. Section 4 discusses how efficiency is measured
using dead reckoning information. These metrics were
tested on the topological coverage algorithm described
in section 5. Results and discussion can be found in
sections 6 and 7.

2 Experimental Setup

The performace metrics in this paper is tested on a
miniature Khepera robot [Mondada et al., 1993] con-
trolled by a Linux PC via the serial port. The robot
is 53mm in diameter. It is equipped with 8 infra-red
proximity sensors which can detect objects up to 30
to 40mm away. It is also equipped with optical wheel
encoders for dead reckoning. The testing is done in a
wooden tray of 75x75cm, which is appropriate for the
size of the robot. Ten wooden blocks of 10x10cm sides
and a separator are available to act as objects within
the environment. Figure 1 shows a picture of the tray
with the obstacles and the robot inside.
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Figure 1: The miniature Khepera robot in a 75x75cm
wooden tray.

3 Effectiveness: Coverage Per-
centage

Computer vision was used to measure the effective-
ness of coverage by a robot. A wall mounted camera
was used to capture a movie of the robot’s progress
within the environment. The approach involves su-
perimposing all the captured frames to compute the
covered area. The equipment is configured as shown
in figure 2 and in our case exploited a setup which
is also being employed for robosoccer within the de-
partment. Images from the camera were captured on a
computer running Linux and the Xawtv software. (This
is a different PC from the one controlling the robot
as described in section 2). Figure 1 shows a sample
image taken from this wall mounted camera. It can
be seen that the image contains perspective distortion.
This results in the original rectilinear area becoming
a trapezium with the regions nearer the camera (at
the bottom of the figure) being larger than the regions
further away.

Figure 2: Mounted camera capturing frames of robot’s
movement.

The area estimation system is detailed in figure 3.
There are four main processes. The first is captur-
ing the navigation process using the camera and ex-
tracting individual frames. The second is to condense
these frames into a coverage map which illustrates the
total region that the robot covered. The third is re-
moving the perspective distortion. The final process is
calculating the effectiveness metric. With the excep-
tion of the first step, which can trivially be performed

frames
input 

condensed
image

deskewed
image

Area=?

coverage

Figure 3: System to estimate the coverage area.

by Xawtv, the implementation details of the remaining
steps will now be discussed.

3.1 Producing the coverage map

Moving on an average of 0.012 m/s, the robot takes
approximately 5 minutes to cover an average environ-
ment inside the tray. Thus even at low frame rates,
several thousand frames are generated. For analy-
sis of the coverage information it is essential to re-
duce this information to a single image which con-
tains a superposition of all the places the robot has
visited. This process requires two sorts of information
– the individual frames that were captured fi(x, y),
and a reference image fr(x, y). The reference im-
age is identical to that in figure 1 except that the
robot has been removed. Before processing both fi

and fr were reduced from colour images to greyscale
ones. This process involved a weighted sum of the in-
dividual red, green and blue components of the colour
[CCIR Recommendation 601-2, 1985]:

I = 0.2989r + 0.5870g + 0.1140b (1)

This returns the greyscale intensity I for a colour
(r, g, b). The algorithm to generate the composite map
consists of two distinct steps. Firstly, a series of dif-
ference images are generated and secondly these are
combined to produce the coverage map. The differ-
ence images are found by subtracting each frame from
the reference image. For all N frames the difference
images, gi, can be computed as follows :

(xj , yj) = h(fi(xj , yj)− fr(xj , yj)) ∀i ∈ [0, N − 1]
(2)

Here h is a threshold function and (xj , yj) are coor-
dinates in the image. All the operations are performed
pointwise on the associated images. The threshold
function is a step response which is defined as follows
:

h(v) =

{
1 , v > 127
0 , else

(3)

Given all the difference images the coverage map can
be produced by performing a pointwise OR of all the
images. This methodology works as the main point
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Figure 4: Quadrilateral to square mapping.

of difference between successive frames is the robot.
As the thresholded images, gi, are effectively a binary
representation of this difference then a logical OR will
yield a resulting image which is a superposition of the
robots locations.

3.2 Correcting the perspective warp

The images captured by the camera shows a effect
known as a perspective warping (figure 1). This means
that distant lines are shortened when compared to
closer lines. This shortening effect makes it difficult
to estimate the coverage area and so it is essential to
correct for this effect. This can be performed using an
inverse perspective transform to map the quadrilateral
into a unit region as shown in figure 4. This map-
ping makes the assumption that the original object, in
this case the tray, is square in shape. The perspective
transform described in this section follows the work of
[Wolberg, 1990].

To make the mathematics simpler this discussion
will originally examine the reverse of the transform
shown in figure 4. The forward perspective can be
written: x′

y′

w′

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

u
v
w

 (4)

Here x, y, u and v are coordinates as shown in fig-
ure 4. w is the perspective. It can be simply written
as x′ = Au. Euclidean coordinates can be computed
using equation (4) and performing the following sub-
stitutions :

x =
x′

w′ =
a11u + a12v + a13w

a31u + a32v + a33w
(5)

y =
y′

w′ =
a21u + a22v + a23w

a31u + a32v + a33w
(6)

For most applications w is generally 1.
For arbitrary systems (quadrilateral to quadrilat-

eral) solving this equation will have 8 degrees of free-
dom (two for each point in the quadrilateral). How-
ever, for the situation here the uv plane is a unit
square. Thus :

(0, 0) → (x0, y0)
(1, 0) → (x1, y1)
(1, 1) → (x2, y2)
(0, 1) → (x3, y3)

This gives the following values for the elements of
the transformation matrix :

A =

x1 − x0 + a31x1 x3 − x0 + a32x3 x0

y1 − y0 + a31y1 y3 − y0 + a32y3 y0
∆x3∆y2−∆y3∆x2
∆x1∆y2−∆y1∆x2

∆x1∆y3−∆y1∆x3
∆x1∆y2−∆y1∆x2

1

 (7)

To compute the reverse of this transform requires
A−1 be found. This can be found by observing that
A−1 = adjA

detA . Now as detA is a scalar quantity then
adjA can be used as an approximation of A−1 so long
as suitable scaling is performed on the coordinates.

To employ this transformation on the image requires
that the corner points of the quadrilateral be known.
This could be computed via image processing and the
methodology of edge detection. However, as they are
fixed in all frames they were found by empirical exami-
nation. Once found, these points were used to generate
a grid of points at which to sample the image. Neigh-
bouring points yield a quadrilateral in the xy plane and
once deskewed they form a rectangle in the uv plane.
For each quadrilateral the intensity was computed us-
ing bi-linear interpolation (average of the intensities of
the nearest pixels). So long as the density of points in
the grid is sufficiently large then this method will yield
an accurate image with the perspective warp removed.

3.3 Computing the coverage

Computation of the coverage information is a relatively
simple process. It requires that three things are known
– the total area of the tray (At), the total area of the
obstacles (Ao), and the total area of the robots path
(Ar). From these three measures the percentage cov-
erage performed by the robot can be computed by :

C =
100Ar

At −Ao
(8)

The area of the tray can be found from the deskewed
image as the number of pixels in the image. For exam-
ple for an image that has width, w, and height h then
At = wh. The obstacles areas can be found from the
reference image. Notice, in figure 1 that the obstacle
is covered with paper. This paper is red to aid auto-
mated identification. By performing the the deskewing
process on the reference image and filtering out all pix-
els which are not red in colour the area of the obstacles
can be simply found. The coverage map, as described
in section 3.1, consists of binary values which denote
whether the robot has travelled to a position in the
image or not. Hence, Ar can be found by summing
the number of values in the coverage map. Once found
these three values can be substituted in equation (8)
to compute the covered area.
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4 Efficiency: Distance Travelled

The algorithm described in section 5 moves the robot in
a zigzag pattern. If there is no overlap between neigh-
bouring strips, the area to be covered can be divided
into horizontal strips. The width of an individual strip
is the width of the robot. The minimum path length
to cover a given region is thus the sum of the lengths
of these strips. Figure 5 illustrates this idea.

x

7x

Figure 5: Idealised minimal path length.

This minimum path length will be shorter than or
equal to the realisable optimal path length needed to
cover a given environment. In the case of a rectan-
gular environment with no obstacles, the minimum
path length calculated this way is the same as the re-
alisable optimal path length. More complex environ-
ments with polygonal objects will have longer realis-
able paths. This is because of the distance required to
travel between different regions will invariably involve
covering already visited floor area. In simpler terms,
calculating the optimal path is equivalent to solving
the Travelling Salesman Problem where each floor po-
sition is a city to visit.

The efficiency of the coverage (E) can be calculated
by :

E =
Da

Dm × C
(9)

Here, Dm is the idealised minimum path length and Da

is the actual distance travelled by the robot calculated
from dead reckoning information. C is the coverage
from equation (8). Dm × C gives the minimum path
length scaled by the amount of coverage. For example,
a robot achieved 50% coverage of a given environment.
The minimum path length of the area covered is thus
Dm × 0.5%. If Dm is not scaled by C, a robot that
poorly covers a given environment but travels a little
will have a low Da

Dm
ratio.

This concept of idealised minimum path length is
analogous to the use of repeatedly covered cells in
simulation by [Gabriely and Rimon, 2002]. There, the
number of repeatedly covered cells is E and the mini-
mum path is the path that covers all unoccupied cells
once and only once.

5 Case Study: Topological Cov-
erage Algorithm

The effectiveness and efficiency metrics was
tested using the topological coverage algorithm
in [Wong et al., 2000]. The algorithm works by
subdiving any rectangular region with polygonal
objects within using the objects as division points (fig-
ure 6(a)). This subdivision can be represented with a

(a) (b)

Figure 6: (a) Segmentation into subregions. (b) Sub-
region representation using planar graphs.

planar graph, with the nodes representing landmarks
and edges representing travel edges (figure 6(b)).
With a graph, subregions are defined by edges.

Starting at a corner, the robot covers the first subre-
gion with a zigzag pattern (figure 7). When a landmark
is reached, the subregion is fully covered as objects
mark the boundaries between subregions (figure 6(b)).
The internal representation is updated with this newly
discovered node. The robot finishes covering the strip
in the zigzag pattern that it is currently covering. This
is to expose all landmarks on the same boundary. The
constructed graph is then searched to find any uncov-
ered subregion. This process is repeated until all sub-
regions are covered.

Figure 7: Coverage with a zigzag pattern.

6 Results

The coverage algorithm was implemented on the Khep-
era robot and used to cover the tray described in sec-
tion 2. Figure 8 shows the dimensions of the environ-
ment.

The coverage map was computed and the image had
the perspective warping removed using the method dis-
cussed in section 3. The resulting image is shown in
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Figure 8: Sample environment. All measurements are
in metres.

Figure 9: The deskewed and false coloured coverage
map.

figure 9. False colour is used to identify the various
regions of importance. In the figure, the blue area is
the area covered by the robot and the maroon region
is the obstacle. The final image is of size 512×512 but
the reachable area is of size 512× 334. This yields the
following areas :

At = 171008 pixels
Ao = 20000 pixels
Ar = 118586 pixels

From these figures and equation (8), the total coverage
for the robot is 79%.

Using the dimensions shown in figure 8, the total
floor area is found to be 0.3116 m2. The idealised min-
imum path length is thus :

Dm =
0.3116m2

0.053m
= 5.88m

Here 0.053 m is the diameter of the robot. Da is esti-
mated to be 6.00 m2 from dead reckoning calculations.
Thus using equation (9) :

E =
6.00

5.88× 0.79
= 1.29

7 Discussion

It can be seen from figure 9 that most of the floor areas
missed by the robot are around the border of the tray

and obstacles. This is due to physical limitations of
driving the robot next to objects. If this limitation is
taken into account, this reachable floor area will always
be smaller then At. This means that the coverage algo-
rithm performance is better than the 79% implies. To
obtain a more realistic coverage figure, the dimensions
of the tray can be shrunk and the obstacles within can
be grown to accommodate for this physical limitation.

In the calculation of E, Dm is scaled with the per-
centage coverage C. This means E is not affected by
the inaccessible border region. Acutal distance trav-
elled Da is compared with minimum path length of
the region covered (Dm×C). The concept of minimum
path is used instead of the optimal coverage path be-
cause finding the optimal path is akin to the travelling
salesman problem and thus NP-hard. As the minimum
path should always be equal or shorter than the opti-
mal path, E will be a conservative estimation of the
algorithm’s efficiency.

The performance metrics are independent of the al-
gorithm used to navigate the robot. The effectiveness
measure uses a movie that capture the coverage process
from a fix position. The efficiency measure uses odom-
etry information and the effectiveness. This means
these metrics can be used to compare the performance
of different algorithms easily.

8 Conclusions

This paper presented two performance metrics for mea-
suring the effectiveness and efficiency of any given cov-
erage algorithm. Effectiveness is measured using com-
puter vision techniques on a movie that captures the
robot’s movements. Efficiency was calculated using
the distance travelled obtained from odometry infor-
mation. It is found that both metrics are suitable for
measuring the performance of robot coverage tasks.
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