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Abstract

Complete coverage navigation is used in a variety of
robot tasks such as vacuuming, surface coating, and
systematic foraging. Performance measures are often
neglected in this area of research. In our previous
work, we have proposed two performance metrics for
this type of navigation task and described how these
metrics can be estimated from data collected during
real robot experiments. Both measures require the es-
timation of percentage coverage. This paper presents
an improved method for extracting the location of the
robot from a sequence of captured images, using evi-
dence gathering with a structural model of the robot.
The locations extracted are used to create a composite
image for use in estimating amount of coverage. The
composite images created with evidence gathering are
more accurate and tolerant to poor lighting conditions
compared to our previous method. Although the new
method requires a significant increase in computation
time, the time needed is found to be acceptable for
evaluating experimental work.

1 Introduction

In tasks such as vacuum cleaning, painting and land-
mine searching, a mobile robot must visit all reachable
floor surface in an enclosed region. This type of be-
haviour can be described as complete coverage naviga-
tion. Complete coverage is different from exploration.
In exploration, a robot’s sensors covers all of its envi-
ronment for map building purposes; while in complete
coverage, the robot or a coverage tool has to pass over
all floor surface.

It is important to measure how well an algo-
rithm performs in real robot experiments. Generally,
the measurement of performance is well studied in
the area of localisation [Duckett and Nehmzow, 1998,
Nehmzow, 2001]. However, it is often neglected in dis-

cussions of research on robot coverage navigation. For
example, Acar showed only pictures with the route
taken by the robot [Acar, 2002]. Ulrich et al. dis-
tributed sawdust uniformly on the floor, and measured
percentage coverage by the amount of sawdust left af-
terwards [Ulrich et al., 1997]. Butler used an efficiency
measure, coverage factor, which depends on the path
length travelled [Butler, 2000]. However, coverage fac-
tor does not account for the percentage covered. A
robot that repeatedly travelled the same area may have
a good coverage factor even though very little of the
environment was actually covered.

In [Wong et al., 2002], we introduced two perfor-
mance metrics for real coverage robots: the effective-
ness and the efficiency. Effectiveness is the percent
covered and is calculated from a pixel count of a com-
posite image of the coverage process. Efficiency is a
measure of unnecessary repetition of robot movements,
and is calculated as a normalised path length scaled by
the percent covered. We also discussed how these mea-
sures can be calculated from data collected during the
experiments. Both metrics require the calculation of
percentage coverage.

In this paper, we present an improved method for
extracting the position of the robot from each frame
of a sequence of images. This improvement creates
cleaner and more accurate composite maps. As a re-
sult, the estimate of percentage coverage is improved.
Also this new method is more generic and can be used
in situations where only part of the robot is used as a
coverage tool.

Note that this paper does not deal with calcu-
lating the performance metrics for experiments with
simulated robots. In simulations, percentage cov-
erage is simply calculated as number of grid cells
covered divided by total number of grid cells. Ef-
ficiency can be measured with the number of re-
peatedly covered grid cells [Gabriely and Rimon, 2002,
Zelinsky et al., 1993]. This is because repeatedly cov-
ering the same grid cell is undesirable and a good al-
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Figure 1: Mounted camera capturing frames of robot’s
movement.

gorithm would thus minimise the amount of repeated
coverage.

Section 2 presents the two metrics used for measur-
ing performance of coverage algorithms. Section 3 ex-
plains how evidence gathering is used to extract loca-
tion of robot from individual frames for creating com-
posite coverage maps. Section 4 compares results from
evidence gathering with our previous method, image
subtraction.

2 Performance Metrics

The effectiveness of a coverage algorithm is measured
as the amount of coverage C

C =
Area covered

Area of reachable surface
(1)

To estimate the area covered by the robot, a wall
mounted camera was used to capture a movie of the
robot’s progress. A suitable setup is shown in figure 1.
The trail of the robot is reconstructed by superimpos-
ing the position of the robot in each frame. With this
composite image, areas visited by the robot and ar-
eas occupied by obstacles can both be estimated by
counting pixels.

Unlike in simulation, efficiency cannot be estimated
by the number of repeatedly covered pixels in the com-
posite image. This is because a real robot does not
move in a grid. It “re-visits” a significantly amount of
pixels even when moving forward. Therefore, we mea-
sure efficiency as the distance the robot travels instead.
It is measured as the comparison of the actual path
taken, Pa, with the optimal path. However, Arkin et
al have shown that finding the shortest coverage path
is NP-hard [Arkin et al., 2000]. As a result, Pa is com-
pared with the idealised minimal path, Pm, instead.
The idealised minimal path is the shortest coverage
path for a mobile robot that can teleport with no cost
associated with the teleport operation. All environ-
ments can be covered by such a robot with no retrac-
ing. Pm is therefore always equal to or shorter than the
realisable shortest path. In summary, the comparison

of path length is calculated as:

L =
‖ Pa ‖
‖ Pm ‖

(2)

However, equation 2 does not take into account the
amount of coverage. Pm is the idealised minimal path
for covering the entire environment. If an algorithm
covers only 50% of a given environment, then Pa should
be compared with 50% of Pm instead. A solution to
this problem is to scale Pm with C. Thus,

L′ =
‖ Pa ‖

‖ Pm ‖ ×C
(3)

In real robot experiments, Pa can be easily obtained
from odometry information. Figure 2 shows how Pm is
estimated. The free space in an environment is divided
into a series of non-overlapping strips. Each strip is the
width of the robot (or the width of the coverage tool
used). Pm is the total length of these strips.

x
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Figure 2: Estimating the idealised minimal path
length, ‖ Pm ‖.

3 Computing the Composite
Coverage Image

There are three major image processing methods that
may be employed to create the composite coverage map
from a sequence of recorded frames. These methods
are image subtraction, template matching, and evidence
gathering with a structural model of the robot. Our pre-
vious work used image subtraction [Wong et al., 2002].
Image subtraction is efficient and simple to perform,
but suffers from two major disadvantages. Firstly, it is
not particularly reliable as artifacts frequently appear
in the background subtraction process; this is because
of environmental factors such as lighting. Additionally,
in the case of a tethered robot (such as the khepera,
figure 3) the cable motion is computed as part of the
final composite image.

The second method, template matching, uses a tem-
plate [Gonzalez and Woods, 2002] as a representation
of the robot and exhaustively searches each frame to
find the region which best matches the template. This
method suffers from two main disadvantages. Firstly,
the search is extremely slow. Secondly, the template
does not work very successfully if the robot’s shape
changes due to perspective or camera distortions.
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Figure 3: Khepera robot used in our experiments show-
ing the cable.

The third approach, evidence gathering, uses a com-
bination of these two approaches. A model of the
robot’s shape is devised and a Hough accumulator
[Nixon and Aguado, 2002] is used to find the most
likely candidate. This approach is faster than template
matching and is more robust than pure background
subtraction.

3.1 Composite map with Evidence
Gathering

Figure 4 describes the required image processing to
find the location of the robot in an individual frame.
Initially, a frame, fi, is extracted from a sequence of n
images F . The frame is then subtracted from a refer-
ence frame r which is an estimate of the images’ back-
ground. The result of this subtraction, si is an image
that emphasises the regions in which movement is oc-
curring. The resulting image is then converted to an
edge map ei, by edge detection. The edge map is given
as evidence to the model fitting algorithm which uses
a Hough transform technique. The result is the coor-
dinates of the centre of the robot and some additional
parameters that describe the robot via the model. The
pertinent steps will now be discussed in turn.

3.1.1 Background Subtraction

It is desirable that the reference image be an accurate
representation of the region without the robot in it.
Any error in the reference image will result in artifacts
in si. Hence, it is desirable that the approach is as
robust as possible to changes in illumination within
the scene; including both lab and experimental fac-
tors. A temporal average is taken of the images in the
sequence. A näıve approach would suggest using the
average of the images. However, this will result in a
ghostlike trail that corresponds to the motion of the
moving object. Instead the median operator was em-
ployed. This computes the reference image as follows:

r(x, y) = median
(
f0(x, y), · · · , fn−1(x, y)

)
(4)

In implementation, the median operation is com-
puted via a histogram of image intensities at each point
and finding the value corresponding to the 50th per-
centile. After computation of the reference image the
background subtraction process is completed via sub-
tracting the reference image from each of the original
images in the sequence. Thus:

si = fi − r (5)

As the images employed are full colour (RGB) im-
ages then this subtraction is computed for each colour
channel separately.

3.1.2 Edge Detection

After the reference image is subtracted, edges are de-
tected to find the edge information for each colour
channel. The edge map is computed using a Canny
edge detector, for two main reasons. Firstly, it is con-
sidered to have an optimal response for step edge re-
sponses, and secondly it can serve to reduce noise in
the image. This noise reduction is useful as it can help
remove small artifacts in si due to estimation prob-
lems in the reference image. The final edge map, ei,
is computed via weighted summation and thresholding
of the individual colour channels. The weighting in the
summation allow the emphasis of features in particu-
lar colour bands. The value of the threshold is tuned
empirically.

3.1.3 Model Fitting

The edge map is then presented as evidence to a model
of the robot. The specific model used depends on two
factors. Firstly, the shape of the robot. Secondly, how
this shape changes because of perspective effects as the
robot moves within the environment. For example,
the khepera robot was modelled as a circle. This is
possible as at the extreme end of the enclosure, where
the robot is at the maximum distance from the camera,
the khepera is still circular. In this case the model
fitting must find the diameter that best fits the khepera
in each frame. A Hough transform is used to fit the
model to the edge data. The specific model fitting
algorithm is shown below:

For a circular fit, the image is initially examined to
find all the edge points. For each edge point, all the
points are computed that are in a circle of diameter
d and centred on this edge point. Diameter was em-
ployed instead of radius as it is easier to compute this
from an image sequence. If the computed point is an-
other edge point, then an array is incremented with a
point indexed by the original edge point and the diam-
eter.

After evidence is gathered from the entire image, the
array A(x, y, d), will contain peaks which correspond to
likely circle centre points and diameters. Within this
array the peak corresponds to the circle centre and
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Figure 4: Extraction of the location of the robot in a single frame.

Algorithm 1 Hough Evidence Gathering
for d = Dmin to Dmax do

for all edge pixels (x, y) do
for θ = 0 to 2π do

xc ← x− d
2 cos θ

yc ← y − d
2 sin θ

if (xc, yc) is in image and (xc, yc) is an edge
point then

increment A(x, y, d)
end if

end for
end for

end for

diameter which occurs most often. This is the best
candidate for the robots location within the frame. It
can be computationally expensive to search all possi-
ble diameters so the possible search space is reduced
by examination of the original image sequence. The
purpose of this is to find estimates of the diameters
of the robot at the maximum and minimum distance
from the camera. This sets upper and lower bounds to
the diameter parameter, Dmin and Dmax.

The output of the model fitting stage will be a series
of numbers which describe the central coordinates of
the robot and the model chosen to describe the robot.
By examining the results from all successive frames
an accurate representation of the robot’s path can be
found. This, along with the model of the robot, can
be used to produce a composite image for calculating
the amount of coverage C.

4 Results and Discussion

Figure 5 shows composite images created from frames
taken on a sunny day with good lighting conditions.
Figure 5(b) is created using image subtraction, our pre-
vious method; and figure 5(c) is produced with our new
evidence gathering method. In this case, the resultant
composite images created from the two methods look
similar.

Figure 6 shows composite images created from
frames taken on a rainy day. With poor lighting con-
ditions, it can be seen that the contrast in the refer-
ence image (figure 6(a)) is a lot lower. Figure 6(b)
is created with image subtraction, and figure 5(c) is
produced with evidence gathering. It is obvious from
that the resultant composite image created by our new
method is better.

The tiny gaps present in the top part of the tray

Figure 5 Figure 6
Image subtraction 91.7% 95.4%
Evidence gathering 95.7% 99.2%

Table 1: C calculated from composite images.

in figure 6(b) are artifacts from the image subtraction
method. Examining the original frames showed that
the region was properly covered by the robot. This oc-
curs because the robot extracted using image subtrac-
tion sometimes is incomplete. This effect is illustrated
in figure 7. Figure 7(a) shows the original frame used.
Figure 7(b) shows the result of extraction using image
subtraction. The robot is incomplete and does not ap-
pear solid. In comparison, evidence gathering does not
suffer from this problem, as seen in figure 7(c).

After the perspective warping is corrected
[Wolberg, 1990], the amount of coverage C is es-
timated for each of the composite images by counting
pixels. The results are shown in table 1. It can be
seen that C calculated from composite images created
by the two different methods differs by nearly 4%.
This difference is due to the more complete robot
silhouette as evidenced in figure 7. Since composite
images created with evidence gathering are more
accurate than those created with image subtraction,
C calculated from the former method is expected to
be closer to the real value.

By using a different model, the location of a robot
of a different shape can be extracted. Figure 8 shows
the centres of the top of a B21r robot extracted using
the evidence gathering method and using an ellipse as a
model of the B21r. Note that the cylindrical robot does
not appear circular because the camera not mounted
directly above the environment. To extract an odd
shaped robot or a tool carried by a robot, a marker can
be used and a model is fitted for the marker instead.
With the image subtraction method, the entirety of the
robot is extracted and centres are never found. This
means that image subtraction cannot be used to create
composite maps for coverage with tools that present
partial views of the robot. In comparison, evidence
gathering can fit a model to find the position of the
tool instead of the robot position.

Since the output of the extraction contains a list
of centres, the path taken by the robot can also be
recreated. An example of this is shown in figure 9.
As a result, the path length taken by the robot can
be calculated from this list. This can be compared
with measurements from odometry information from
the robot.
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(a) (b) (c)

Figure 5: Frames taken under good lighting condition. (a) Reference image. Composite image created using (b)
image subtraction, (c) evidence gathering.

(a) (b) (c)

Figure 6: Frames taken under poor lighting condition. (a) Reference image. Composite image created using (b)
image subtraction, (c) evidence gathering.

(a) (b) (c)

Figure 7: (a) Extraction from a single frame. (b) Robot extracted using image subtraction appears “porous”.
(c) Evidence gathering does not suffer from this effect.
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(a) (b) (c) (d)

Figure 8: Extracting the location of a B21r robot using evidence gathering. The white dots correspond to where
the centres are found.

Figure 9: Path taken by robot recreated using locations
of centres extracted.

A disadvantage of evidence gathering is its high com-
putational cost compared to the image subtraction
method. For a sequence of around 3000 frames, image
subtraction takes only a few minutes, while evidence
gathering takes several hours. However, since perfor-
mance metrics are used offline for data analysis, the
speed of the evidence gathering method is acceptable
as processes can be left running on a computer cluster
overnight.

There are two possible ways to improve computa-
tion efficiency. First, the current implementation used
Python, a scripting language. The speed of computa-
tion may be improved by implementation using a com-
piled language such as C. Secondly, the image size to
be analysed can be limited to around the robot’s posi-
tion after the first frame. Since the computation time
of the model fitting procedure depends on the number
of edge points, not the image size, the improvement in
speed cannot be estimated without studying edge pix-
els distribution in the original frames. However, nei-
ther method will make evidence gathering real time.

5 Conclusions

This paper presented an improvement on our previ-
ous algorithm for creating a composite coverage im-
age. Since both metrics for efficiency and effective-
ness of performance of coverage navigation depend on
the amount of coverage achieved, creating an accurate
composite image is very important.

Evidence gathering with a structural model of the
robot is used for creating composite coverage maps.
For each frame in the sequence, a reference background
image is first subtracted and edge detected. The re-
sulting edge map is then presented as evidence to a
model of the robot. This model fitting finds the cen-
tral coordinates of the robot and the parameters of the
model chosen to describe it. By examining the whole
sequence, the path taken by the robot can be re-created
to create a composite coverage map.

Compared to image subtraction, the method we pre-
viously used, composite images from evidence gather-
ing suffer from less artifacts and are more tolerant to
different lightning conditions. It can also be used in ex-
periments where coverage tools are used. Although the
computational cost is higher, the increase is deemed
acceptable.
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