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Abstract— In applications such as vacuum cleaning, paint-
ing, demining and foraging, a mobile robot must cover
an unknown surface. The efficiency and completeness of
coverage is improved via the construction of a map of
covered regions while the robot covers the surface. Existing
methods generally use grid maps, which are susceptible to
odometry error and may require considerable memory and
computation. This paper proposes a topological map and
presents a coverage algorithm in which natural landmarks
are added as nodes in a partial map. The completeness of the
algorithm is argued. Simulation tests show over 99% of the
surface is covered; 85% for real (Khepera) robot tests. The
path length is about 10% worse than optimal in simulation
tests, and about 20% worse than optimal for the real robot,
which are within theoretical upper bounds for approximate
solutions to travelling salesman based coverage problems.
The proposed algorithm generates shorter paths and covers
a wider variety of environments than topological coverage
based on Morse decompositions.

I. I

Coverage path planning is needed in a variety of appli-
cations such as vacuum cleaning, painting, humanitarian
demining and foraging. In these tasks, a mobile robot must
visit all reachable surface in an enclosed region. When
given an unknown environment, the robot must use sensor
information to avoid obstacles and to build a partial map
to remember where it has been, so that it may return to
cover remaining areas.

Coverage algorithms generally use uniform grid maps,
where the value for each cell represents the probability of
an obstacle [5]. Zelinsky et al [16] required a complete
grid map of a known environment and used the distance
transform to plan the coverage path. Ulrich et al [12]
picked the direction with the most uncovered cells in a
partial grid map as the new direction of travel whenever
the robot reached a wall. Gabriely and Rimon [6] also
used a partial grid map, but instead chose a new direction
of travel at each cell. The first uncovered and unoccupied
neighbour of the current cell found in an anti-clockwise
direction was chosen as the next step. This behaviour
created a spiral path that spiral outwards in open spaces.
The grid based representation requires accurate localisa-
tion to create and maintain a coherent map. Also the size
of the map grows quickly as resolution does not depend
on complexity of the environment [11].

Topological maps represent the environment as a graph
where landmarks are nodes, and edges represent the
connectivity between landmarks [8]. Mammals appear to
store spatial information topologically [10]. Topological
maps are more compact than grid maps and they permit
more efficient planning through the use of standard graph
searches [11]. They also do not require accurate localisa-
tion. For example, Zimmer [17] successfully implemented
a topological navigation and mapping system for a low
budget platform with only light and touch sensors.

Very little attention has been given to applying topo-
logical maps for coverage tasks in known or unknown
environments. One exception is Acar and Choset’s [1]
use of Morse decomposition, representing the cellular
decomposition as a topological map. Each cell is covered
in turn and the coverage is complete when the topological
map is completely constructed. Landmarks in the maps
are critical points in Morse functions, where a sweep
algorithm uses surface normals of obstacles to create the
topology. One inefficiency in the use of critical points is
the need for a coverage pattern that includes retracing.
In contrast, our approach uses corners as landmarks, and
does not require retracing, so shorter coverage paths are
generated. Moreover, a wider variety of environments is
supported.

Some researchers approach the coverage problem with
large teams of robots, using dynamic roadmaps to co-
ordinate robots’ behaviour over the desired region [3],
or partitioning an environment dynamically without the
need for global communication [7]. Our work focuses
on coverage with a single mobile robot, which is more
appropriate for tasks such as vacuuming. A team of
vacuuming robots would be impractical and uneconomic
in a domestic environment for example, whereas a team
of inexpensive robots may be appropriate for a foraging
task in a large environment.

II. S R

It is important how the robot represents the surface
it has already covered while it is covering an unknown
environment. A classic approach to representing mobile
robot environments is exact cell decomposition [9], which
is commonly used in point to point navigation. Here, free
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Fig. 1. (a) Cellular decomposition formed with horizontal sweep line
using our method. (b) Topological map representing this decomposition.

space in a robot’s environment can be characterised by
a decomposition into a collection of (non-overlapping)
subregions. A connectivity graph which represents the
adjacency relation among the subregions is constructed
and searched for a path leading from a initial to a goal
position. An example of exact cell decomposition is the
trapezoidal decomposition [4], where a line L is swept
across the environment and creates subregion boundaries
whenever a vertex is encountered. Each subregion of the
trapezoidal decomposition is thus either a trapezoid or a
triangle.

In our work, exact cell decomposition is used for
coverage rather than finding a point to point path. If
the sweep line L intersects a subregion at exactly two
points, then the subregion can be fully covered by a
zigzag pattern that is parallel to L. The coverage of the
environment can therefore be achieved by covering all
subregions. A suitable decomposition can be formed by
creating subregion boundaries whenever L enters or leaves
an obstacle, as shown in Fig. 1(a).

The trapezoidal decomposition is not used in this work
because of the following two reasons. Firstly, trapezoidal
decomposition can only handle polygonal obstacles. Sec-
ondly, the decomposition formed using our method has
larger subregions than trapezoidal decomposition. For
example, two subregions will be formed to the left of
the quadrilateral obstacle in the bottom of Fig. 1(a) using
trapezoidal decomposition compared to only one here.
Even though the subregion created in our method is a
non-convex polygon, it can be fully covered by one zigzag
pattern.

Rather than calculating the decomposition ahead of time
from a known map, we assume the map is unknown and
in this paper we show how the decomposition can be
constructed online, using natural landmarks, as the robot
progresses to cover the unknown environment.

The decomposition can be represented with a planar
graph G, which consists of a set of nodes N(G), and a set
of edges E(G), illustrated in Fig. 1(b).

There are four types of nodes in N(G) – concave (�),
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Fig. 2. Detection of convex landmarks using time series data. Dashed
circle indicates the area covered by onboard sensors.
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Fig. 3. (a) Detection of convex landmarks from a single position. (b)
Using a ring of 48 sonar sensors.

convex ( � ), unexplored (×) and joint (•). Concave and
convex are natural landmarks in the environment. Unex-
plored nodes represent directions leading to subregions
detected and to be covered later. Joint nodes are needed
to join different landmarks together along boundaries.

Concave landmarks exist when obstacles are on two
adjacent sides of the robot. Convex landmarks exhibit
a discontinuity on one side. Depending on the sensors
present, convex landmarks can be detected in two different
ways. If the robot can detect range at very few different
angles or has only proximity sensors, a time series ap-
proach can be used. This is illustrated in Fig. 2, which
shows a wall to the north of the robot disappearing. If the
sensor information is significantly long range and rich,
the discontinuity can be detected from a single position,
as shown in Fig. 3 [14].

Edges store the types of motion required to travel be-
tween nodes they are incident upon. For example, whether
the edge is next to a wall and which side the wall is
on. They also store estimated distances separating the two
nodes they connect.

III. T C A

To completely and efficiently cover an environment, the
robot must cover the current subregion while recording
any neighbouring subregions in G so that it may subse-
quently cover them as well. The overall path through the
environment should minimise travel between subregions.

The algorithm is implemented as a finite state machine
with three states – boundary, normal and travel. Fig. 4
shows the transition between the states. The boundary
state handles the situation where the robot is on the border
between two different subregions. The normal state directs
the robot to cover all floor area within a subregion using
a zigzag pattern. Finally, the travel state generates paths
for moving between subregions.

It is assumed that the robot starts the coverage process
from a corner of the environment. This means the execu-
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Fig. 4. State transition diagram.

tion of the algorithm always starts in the boundary state.
This restriction is not a shortcoming because it is easy to
program a robot to seek a corner by using simple forward
and wall following movements.

The operation of the normal state can be summarised
as follows:

if at landmark then
if landmark not in G then

update G
end if
state ⇐ boundary

else
zigzag coverage pattern

end if

Here the robot moves in a zigzag pattern until it
arrives at a landmark, ie a concave or convex landmark.
This is because landmarks are always on the borders of
subregions. If the robot starts the zigzag pattern on the
other border of the current subregion, reaching this border
means a complete coverage of the current subregion. If
the landmark has never been visited before, G is updated
accordingly. The process of updating and maintaining G
is described in section III-A.

The operation of the boundary state can be summarised
as follows:

if at new landmark then
update G

end if
if end of border strip then

state ⇐ travel
else

move forward
end if

Here the robot moves along borders between sub-
regions. This is to expose all subregions neighbouring
a particular border. G is updated whenever the robot
discovers a new landmark. When the robot reaches the
end of the border, it switches to the travel state.

The following describes the operation of the travel state:
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Fig. 5. Representation of a subregion being covered.

if just changed to travel state then
T (n)⇐ search G
if T (n) = ∅ then

exit
end if

end if
ng ⇐ first node in T (n)
if at ng then

if ng = unexplored node then
state ⇐ normal

end if
T (n)⇐ T (n) − {ng}

end if
move towards ng

When operation first enters the travel state, a breadth-
first search is used on G to find the closest unexplored
node. The search returns a list of nodes, T (n), leading
from the current node to the selected unexplored node.
If the search returns an empty list, the environment is
completely covered and the algorithm exits. To reach the
selected uncovered subregion, the robot moves from one
node in T (n) to the next. A node is removed from T (n)
when the robot reaches the corresponding area. When the
robot arrives at the last node in T (n), ie the unexplored
node, operation switches to the normal mode in the chosen
uncovered subregion.

A. Representation Update

G is updated whenever a new landmark is visited.
A new node is created to represent the newly found
landmark. Unexplored nodes are added for each direction
connecting the new landmark to newly discovered sub-
regions. New edges and joint nodes may be needed to
connect the new landmark and subregions to G.

In the normal state, the current subregion being covered
has an arrangement of edges and nodes similar to that
shown in Fig. 5(a). The subregion is bounded on one
side by a horizontal edge. This horizontal edge is on
the boundary where this subregion is discovered. It is
also where the coverage of this subregion starts. The two
vertical edges are connected to two unexplored nodes (×).
When the robot reaches the border on the other end, a
second horizontal edge is added and the nodes around the
subregion become fully connected (Fig. 5(b)).

Sometimes both the top and bottom boundaries of an
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Fig. 6. A subregion where both top and bottom boundaries are known.
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Fig. 7. Adding a convex landmark.

uncovered region have been exposed during two different
boundary explorations. A situation where this can happen
is around a free standing obstacle and one side of the ob-
stacles has been covered. Fig. 6(a) shows a robot covering
a subregion where both top and bottom boundaries are
known. Note that there are two sets of unexplored nodes
(×), one for the top boundary, one for the bottom. This
duplication of unexplored nodes occurs because boundary
exploration of both the top and bottom borders classify
the subregion as uncovered. The robot does not know
that both borders belong to the same subregion during the
earlier boundary explorations. When the robot reaches the
top border and arrives at the convex landmark ( � ), it is
recognised as a previously visited landmark. The two sets
of unexplored edges are merged to form a single subregion
as shown in Fig. 6(b).

Fig. 7 illustrates the situation where the robot is cover-
ing from top to bottom and reaches a convex landmark. A
new convex landmark ( � ) is created. This new landmark
is linked to G through a new joint node (•). Unexplored
nodes (×) are added to both the convex ( � ) and the
joint node (•). This is because both nodes lead to the
uncovered subregion underneath. Execution also switches
to the boundary state after this update.

Fig. 8 shows a different example where the robot visits
a new concave landmark. The unexplored node (×) is
converted to a concave landmark (�). Since this new
landmark does not lead to any new uncovered subregions,
no unexplored nodes are added.

IV. C  A

Assume the zigzag pattern covers a given subregion
with strips in the horizontal direction. Then all reachable
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Fig. 8. Adding a concave landmark.

Fig. 10. Simulation of coverage of a spiral environment.

subregions share at least one horizontal boundary with
another subregion. Those with only one shared boundary
have obstacles as either their top or bottom neighbours.

All subregions coverage starts from a boundary. This
is because the robot enters a subregion either from the
top or bottom boundary to start the zigzag coverage
pattern. The only exception to this is the initial subregion,
where coverage starts on the obstacle side. All subregions
intersect the sweep line L at exactly two points, hence
the zigzag pattern will always lead the robot to the other
boundary. The shared boundary will be fully explored to
discover neighbouring subregions. Therefore any subre-
gions neighbouring a known subregion will also be added
to the G.

All reachable subregions share a boundary with an-
other subregion that ultimately leads back to the initial
subregion. This implies that all reachable subregions will
always be discovered. The algorithm continues until E(G)
contains no unexplored nodes. Thus a subregion will be
covered if it is added to G.

In conclusion, any subregion connected to the initial
subregion, either itself or via other subregions, are added
to G. All subregions in G are always covered. Therefore
the algorithm achieves complete coverage of all reachable
floor area for a given environment.

V. R

The coverage algorithm has been tested in both simu-
lation and on the miniature Khepera robot. The simulated
robot is circular in shape and has 8 range sensors evenly
distributed around its circumference. Fig. 9 and Fig. 10
show two sets of simulation results. Fig. 9 is a simple
rectangular environment with two polygonal and one
circular obstacles. Fig. 10 shows a more complex spiral
environment.

The Khepera is equipped with 8 IR proximity sensors
for detecting obstacles. The robot is 53mm in diameter and
the IR sensors can detect objects up to 30mm to 40mm
away. Dead reckoning is used to calculate the position
of the robot. The situation then is analogous to a blind
person trying to cover a room. It is impossible for the
robot, or a blind person, to know whether it is following
the horizontal strips of the zigzag cleaning pattern. This
can be seen in Fig. 11(a), where the path taken is no longer



Fig. 9. Simulation results.

(a) (b)

Fig. 11. Condensed image showing (a) heading error with only
proximity sensors. (b) path taken by robot.

horizontal. However, if the environment is rectilinear and
reasonably populated, the robot can adjust its heading
using wall following whenever it comes near an object.
In this case, wall following is done by repeatedly moving
closer to and further from the object because the relative
angle to the wall cannot be calculated. Fig. 11(b) shows
the result from one experiment. The robot was initially
situated in the top left corner and facing right. In the top
centre was a square obstacle. Thus the environment was
divided into three smaller subregions – two smaller ones
on top and one larger one below. The irregular shaped
interior region is the path taken by the robot.

In [15], we proposed two performance measures for
robotic coverage experiments. These performance mea-
sures evaluate the effectiveness and efficiency of coverage
algorithms. Effectiveness is measured as the percentage of
coverage, ie the ratio of covered area to reachable floor
area. In simulation, this can be calculated as the ratio
of the number of uncovered cells to empty cells. With
a real robot, a video camera can be used to record the
experiments. The captured frames are combined to create
a condensed image, like the ones in Fig. 11. With the
perspective distortion removed from the condensed images
[13], the floor areas can be approximated as number of
pixels.

The percentages of coverage of the simulations in Fig. 9
and Fig. 10 are 99.8% and 99.2% respectively. Note that
cells adjacent to occupied cells are not accessible, thus
leaving a white border around obstacles. Using pixel count
on the condensed image in Fig. 11(b), the percentage
coverage is found to be approximately 85%.

Efficiency of a coverage algorithm is measured as the
comparison of the actual path taken, Pa, with the shortest
path. However, finding the shortest coverage path is NP-
hard [2]. Therefore, the actual path is compared with

the idealised minimal path, Pm, instead. Efficiency is
calculated as ‖Pa‖/(‖Pm‖×C), where ‖Pa‖ is the Euclidean
distance of Pa and C is the amount of coverage. The
idealised minimal path is the shortest coverage path for a
mobile robot that can teleport with no cost associated with
the teleport operation. All environments can be covered by
such a robot with no retracing. Pm is therefore equal to
or shorter than the realisable shortest path. ‖Pm‖×C gives
the minimum path scaled by the amount of coverage. This
is important as a robot that poorly covers an environment
but travels little will have a low ‖Pa‖/‖Pm‖ ratio.

The efficiency of the simulations in Fig. 9 and Fig. 10
are 1.106 and 1.061 respectively. The efficiency for the
real robot experiment in Fig. 11(b) is 1.20.

VI. D

All the missed cells in simulations are along borders
of subregions. In the boundary state, both wall following
and move forward behaviours are carried out. The robot
follows a path that spans more than one row. Some of
the cells along the border are missed during the boundary
state exploration. These missed cells will not be covered
later if they are on the side of the border that belongs
to a previously covered subregion. This is because G
records coverage information using subregions. There is
no direct representation of specific surface positions. As
these missed cells are not recorded in G, the robot will
not return to cover them later. However, the amount of
missed cells is found to be small with coverage over 99%
achieved.

Arkin et al. used travelling salesman tours for approx-
imating coverage paths. They gave an upper bound of
1.325N for such tours on grid graphs with holes inside,
where N is the number of cells to be covered [2]. As each
cell is at a distance of one away from its 4-neighbours, a
coverage path of length N happens when each cell in the
environment is visited once and only once. The idealised
minimal coverage path Pm used in the efficiency measure
always has a length of N because it is defined to be the
path with no retracing, ie it covers N cells in a path of
length N. The upper bound of 1.325N in [2] indicates
the length of travelling salesman coverage tours are at
most 1.325 times longer than N. In terms of our efficiency
measure, the upper bound is thus ‖Pa‖

‖Pm‖
=

1.325N
N = 1.325.



Fig. 12. Rectangular coverage pattern in [1]

This means the efficiency figures of 1.106 and 1.061 in
the simulated experiments are within this bound. Note
that the upper bounds calculated in [2] were for known
environments, while the proposed algorithm works on
unknown environments.

In [1], a rectangular pattern that repeats its traversal was
used (Fig. 12). Due to the use of Morse decomposition,
the coverage algorithm in [1] required wall following
on the vertical boundaries of subregions to detect other
subregions connected to the sides. In contrast, the pro-
posed algorithm searches for new subregions in front
and on both sides of the robot. This means that all
area along the vertical boundaries are scanned for new
subregions. As such the shorter zigzag pattern that does
not include repeated traversal can be used. Therefore it
generates shorter coverage paths compare to [1]. Also the
algorithm in [1] cannot cover environments with obstacle
boundaries parallel to the sweep direction L. This type of
environment is supported in our algorithm as illustrated
in the simulation shown in Fig. 10.

The travel between subregions are done by following
the list of landmarks returned by the search on G. The
search favours paths with landmark nodes (concave and
convex) over joint nodes. Therefore the traversal between
subregions is robust against odometry error and sensor and
actuator noise [8].

VII. C

A topological based coverage algorithm is presented.
It uses natural landmarks in the environment to construct
a planar graph representing a decomposition of reachable
surface into simple subregions that can be covered by a
zigzag pattern. The grid based methods generally used
for navigation in coverage applications can require con-
siderable memory and computation and is susceptible to
odometry error. On the other hand, the topological map
used in this paper is proven to be robust against sensor
and actuator noise. It is also compact as its resolution
corresponds to the complexity of the environment.

Simulation results show the algorithm successfully cov-
ers diverse environments with a coverage better than 99%
and efficiency not more than 110% of the optimal. The
algorithm was also implemented on a Khepera robot
with infrared sensors. Current heading corrections are
made under the simplifying assumption of a rectilinear
environment. Nonetheless it shows the algorithm realis-
able under real, inexact conditions. The percentage of

coverage was measured at about 85%. The efficiency for
the real robot was 120% of the optimal path length. The
efficiency measures on the experiments show the path
length generated to be within bounds of that approximated
in [2].

A comparison is given to another topology based system
[1]. Our work uses a simpler coverage pattern and gener-
ates more efficient paths. It also uses a simpler technique
for landmark detection, thus enabling the coverage of en-
vironments with obstacles parallel to the sweep direction,
such as rectilinear environments.

R

[1] Ercan U. Acar and Howie Choset. Sensor-based coverage of
unknown environments: Incremental construction of morse decom-
positions. International Journal of Robotics Research, 21(4):345–
366, April 2002.

[2] Esther M. Arkin, Sandor P. Fekete, and Joseph S. B. Mitchell.
Approximation algorithms for lawn mowing and milling. Compu-
tational Geometry, 17(1-2):25–50, 2000.

[3] O. Burchan Bayazit, Jyh-Ming Lien, and Nancy M. Amato.
Better flocking behaviors in complex environments using global
roadmaps. In Proceedings of the Workshop on Algorithmic Foun-
dations of Robotics, December 2002.

[4] B. Chazelle. Algorithmic and Geometric Aspects of Robotics,
chapter Approximation and Decomposition of Shapes, pages 145–
185. Lawrence Erlbaum Associates, 1987.

[5] Alberto Elfes. Sonar-based real-world mapping and navigation.
IEEE Journal of Robotics and Automation, RA-3(3):249–265, June
1987.

[6] Yoav Gabriely and Elon Rimon. Spiral-STC: An on-line coverage
algorithm of grid environments by a mobile robot. In Proceedings
of the IEEE International Conference on Robotics and Automation,
pages 954–960, Washington, DC, May 2002.
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