
Lightweight Agent Framework for Camera Array
Applications

Lee Middleton, Sylvia C. Wong, Michael O. Jewell, John N. Carter, Mark S. Nixon

School of Electronics and Computer Science, University of Southampton, UK
{ljm,sw2,moj,jnc,msn }@ecs.soton.ac.uk

Abstract. This paper describes a lightweight middleware agent framework (LAF)
for coordinating a large array of computers with attached cameras to construct
high resolution video-rate image sequences. Compared to existing camera mid-
dleware, LAF provides more than a remote sensor access API. The use of an
agent framework allows reconfigurable and transparent access to cameras, as well
as software agents capable of intelligent processing. It also eases maintenance by
encouraging code reuse. Other features include an automatic discovery mecha-
nism at startup, and multiple language bindings. Performance tests showed the
lightweight nature of the framework while validating its correctness and scalabil-
ity. Two different camera agents were implemented to provide access to a large
array of distributed cameras. Correct operation of these camera agents was con-
firmed via several image processing agents.

1 Introduction

Increasingly, large arrays of high quality cameras are used for capture and analysis of
motion. Kanade et al. mounted 49 cameras in a room to capture motion for virtualised
reality [1]. Wilburn et al. built a dense CMOS camera array to achieve high resolution
and framerate capturing of image data [2]. Zhang et al. built a large self configuring
camera array capable of rendering novel views of scenes in near real time [3]. In all
these works multiple cameras are employed to produce a higher quality image than
would be possible with a single camera. Specifically, we seek to deploy high resolution
video-rate data captured from multiple cameras for the analysis of human gait.

In this paper we propose a middleware framework for a camera data acquisition
system. The aim is to allow transparent and reconfigurable access to visual data while
minimising maintenance by encouraging code reuse. Real time streaming is not re-
quired because gait analysis requires high resolution data. Additionally, the complexity
of the algorithms employed make it impossible to do on-the-fly processing. The mid-
dleware facilitates communication between dedicated camera computers and image/gait
processing software. It has the following features: (i)Zeroconf: This allows agents to
automatically locate middleware components in a network. (ii)Multi language support:
This allows users to exploit the benefits of the different languages. (iii)Lightweight: The
algorithms used in gait analysis are CPU intensive, thus the middleware must not be an
additional adverse drain on resources. (iv)Service discovery: Agents can query the mid-
dleware to discover and utilise services provided by other agents. (v)Locking: Cameras
are stateful devices. It is important that processes cannot be interrupted mid-session.

Hori et al. [4] also implemented a middleware for networks of computers with at-
tached cameras. Here, cameras were accessed as if they were a local device. This is
similar to player/stage [5], which provides software abstraction for robot sensors. How-
ever, these systems are not suitable for our application as their goals are to provide
direct access to sensor data over a network. In contrast, we want intelligent agents in
our framework, where researchers can provide agents that perform complex algorithms.
Multi-camera tracking systems [6,7] also study the same problem. Here, camera agents
not only act as capture devices, but also perform processing on the image data. The
middleware is highly focused on the task of tracking. Thus the messages are high level
commands like location of objects. The middleware is also responsible for coordinating
the movement and focus of the cameras to achieve a goal. In comparison, the middle-
ware in our application has to be more general purpose. This is because researchers
have different requirements from the image data. For example, in our research group,
there are people who work with raw image data, silhouettes [8], and 2D and 3D mod-
els [9]. A final approach to this camera coordination problem is to leverage an existing
middleware such as CORBA [10] or XML-RPC [11]. However, both systems require
lot of resources to run. Many features not required in our application are included by
default, and they cannot be optionally switched off. Also, there is a steep learning curve
before researchers can add their existing code to this framework.

Our proposed solution contains some of the features from all the approaches out-
lined above, while being easy to use and lightweight. The paper is organised as follows:
Section 2 provides an overview of the Lightweight Agent Framework (LAF). Section 3
introduces the two camera agents essential to our camera data acquisition system. Sec-
tion 4 presents results from performance tests. Finally, Section 5 describes application
agents that employ the services provided by the camera agents.

2 System Overview

Figure 1 shows an overview of LAF. The system has been simultaneously developed
on C++, Java, and Python. Central to the system is therouter. It is the main point of
communication and coordination. Allmessagesbetween components (except stream-
ers) are sent via the router. Also, it acts as a broker for agents providing and requiring
services. Agents are providers of services. Remote agents are clients of services pro-
vided by agents. To use the service provided by an agent, a remote agent requests alock
on the agent from the router. However, LAF is not restricted to a simple model of clients
(remote agents) and servers (agents). An agent can contain one or more remote agents,
thus allowing it to be both a client and a server at the same time. Ports are inputs and
outputs of agents. Streamers are direct socket connections, mediated via the router. This
allows video information to be sent directly between agents without the traffic passing
through the router.

Ports and StreamersThere are two types of ports in LAF: input and output. Input
ports are used to pass data to an agent. They can be optional or non-optional. Processing
cannot proceed until all non-optional ports areset. Output ports are used to pass data
to remote agents. In applications involving a large array of cameras, a large amount of
data is generated. If this data is to be sent via the router, the router may fail. For this

reason, streamers were implemented. A streamer is a direct socket connection between
an agent and a remote agent. The router is responsible for instigating this connection,
so address information is not required ahead of time.

MessagesLAF employs XML messages for communication between the router,
agents and remote agents. Broadly, there are three classes of messages – status, router
and agent. Status messages give feedback about the success of an action. Router mes-
sages are actions that only the router can perform. Agent messages are communications,
via the router, between agents and remote agents. They deal with control and commu-
nication.

Router The router, agent and remote agent are implemented via a common class hi-
erarchy, as shown in Figure 2. The router is responsible for agent subscription, message
re-direction, and agent selection. It employs a plugin system which makes it simple to
extend its functionality. Upon starting, the router registers itself as a multicast DNS ser-
vice (mDNS) in zeroconf. The mDNS service allows information to be passed to any
subscriber of the service. In this case the port and IP address of the router are passed via
mDNS. Essentially this means that connection to the router by any agent is potentially
an automatic process.

The subscription process of an agent from the perspective of the router begins when
a SUBSCRIBEmessage is received. This message contains thetypeof agent which is
being subscribed. The type of an agent is purely a descriptive name describing the ser-
vice it provides. When the subscription is received the router assigns a unique name for
the agent. This is made up of the type and a unique id number. Once an agent is sub-
scribed, it is added to two lists (connected agents and free agents) which are maintained
in the router. If an agent unsubscribes or dies, the router removes it from both lists. All
messages pass through the router. As a result of this the router can perform filtering of
the messages. For example, some messages are permitted only if the sender has a lock
on the target. If the sender does not have the required lock, the router returns anNOK
message to the sender. In most cases however the extent of the routers manipulation of
the message is handling acknowledgements and passing it onward to the appropriate
target. The last function of the router is the agent selection process. This is used when
a remote agent attempts to lock an agent. The selection mechanism currently employed
is a näıve one. A handle to the first agent of the correct type on the free agent list is
returned to the remote agent. The selected agent is also removed from the free agent
list.

Agents and Remote agentsUsers writing agents for LAF will need to create a
derived class ofAgent . The Agent class provides the underlying networking and
messaging required for all agents. The derived class will minimally need to (a) provide

Router Remote
Agent

Agent

Streamer

Agent

Input Port

Output Port

Fig. 1. An overview of how the middleware and
agents fit together.

BaseAgent

CommsThread

Router

AgentRemoteAgent

Fig. 2. Diagram showing the interrelation of the
software objects.

Remote

Agent

Service

Index

Param

Value

Camera

Agent

Cameras

Router

num
Streamer

(a)

1 1 2 2 3 3 4 4 5 500

10 0 1 0 1 0 1 0 01 1

frame

camera

Camera 0

Camera 1

Camera

Agent

(b)

Fig. 3. (a) Configuration of camera agent. (b) Sending image data with a streamer.

type, ports, and streamers in the constructor, and (b) overwrite theaction() method.
Type is a descriptive name of the service provided. Ports and streamers provide the
inputs and outputs of this agent. Theaction method is the engine of the agent. The
user writes their own action method to provide the agents’ functionality. Users writing
remote agents will need to create a derived class ofRemoteAgent . The derived class
will need to specify the name(s) of the agent(s) it wishes to lock, set the agent’s input
ports and call theaction() method. Agents and remote agents can connect to LAF
either automatically or manually. Automatic connection is performed using zeroconf
while manual connection uses environment variables.

3 Camera Agents

Figure 3(a) illustrates the specific ports and general configuration for a camera agent.
Only theserviceport is compulsory. The service port exposes the features of the cam-
eras controlled by the agent, such as grab image and set shutter speed. The other input
ports were employed to set required parameters. Thestreameris used to transmit image
data over the network directly to remote agents. The video data is sent a frame at a time
with the frame from each camera interleaved as shown in figure 3(b).

The camera agent provides access to the camera array on a per PC basis. However,
accessing and controlling a large number of cameras can be cumbersome using camera
agents alone. For instance to access 6 cameras which are connected in pairs to each of
three PCs the user needs to maintain three separate camera agents. As a result, a su-
per camera agent was written to provide a single collated image data stream to image
processing applications. The configuration for a super camera agent is shown in Fig-
ure 4(a). It contains a number of remote agents for locking camera agents connected to
the router. Thus, the super camera agent is both a remote agent and an agent. Image data
is transmitted to the super camera agent via a number of streamers. These are deman-
gled into a single output stream for other other remote agents to consume (Figure 4(b)).

4 Performance Testing

Four tests were carried out to evaluate the performance of LAF. Figure 5 shows that
connection and disconnection times to LAF do not increase with an increasing number
of registered agents. The second test measures the overhead of messaging. One hundred

Camera
Agent

Cameras

Agent
Camera

Cameras
Router

Streamer

Streamer
Super Camera

Agent

Remote

Agent

Remote

Agent

(a)

Stream A

Stream B

map

Queue 2

Queue 1

Queue 4

Output Stream
Queue 3

(b)

Fig. 4. (a) Configuration of super camera agent. (b) Demangling of image streams.

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000

tim
e

(in
 m

s)

number of agents registered

connect
disconnect

Fig. 5. Connection and disconnection time
against number of agents registered.

remote agents
agents C++ Python
C++ 943 1771
Python 1596 2158

Table 1. Time (in ms) to perform 100 string
concatenation operations.

time (ms)
C++ agent 263
C++ remote agent 291
Python agent 512
Python remote agent 604

Table 2.Startup time.

separate operations were invoked against an agent with two mandatory inputs and a
single output. The result is shown in Table 1. The third test measures the average startup
times of agents and is illustrated in Table 2. The slower start up times of the remote
agents is the overhead due to locking. The messaging test and the startup time test
demonstrate the lightweight nature of LAF. The fourth test examined the streaming
performance. For a camera agent we achieved an average of 661 Mbit/s with a gigabit
network. This means we can directly (640 × 480, 30fps) stream video data from 9
camera.

5 Application Agents

As an example of the system in operation three application agents are described here.
Firstly, an agent was designed to allow remote configuration of cameras (see Figure 6).
Secondly, an image mosaicing agent was designed. Figure 7(a) shows a composite im-
age created by this agent. Finally, a background subtraction agent was developed. It
locks a single camera and statistically computes a reference background when no sub-
ject is in view. When the subject is in the scene, the reference is used to find portions of
the image that have changed. Figure 7(b) shows an example output frame.

Router

Camera
Agent

Camera
Agent

displayGUI

Remote
Agent

Application

Streamer

Fig. 6.Camera control application agent.

(a) (b)

Fig. 7. (a) Creation of an uncalibrated image mosaic from six cameras on three PCs using the
image mosaicing agent. (b) Output from the background subtraction agent.

6 Conclusions

This paper described the development of a middleware, LAF, for the control of a large
array of cameras. LAF consists of a router, and superclasses for agents (service providers)
and remote agents (clients). Since agents can contain remote agents, LAF is not lim-
ited to a simple client/server model. LAF provides transparent access to camera control.
Additionally, it facilitates access and reuse of intelligent agents that provide a variety
of image processing operations. Other features of LAF include minimal computational
overhead, zeroconf for automatic discovery of components in the framework, locking,
and multiple language support. This paper also presented performance tests and ap-
plications of LAF. By measuring the connection and disconnection times of agents on
an increasingly loaded router, scalability was demonstrated. Messaging tests showed
the overhead of communication, in either C++ or Python, was small. Measured startup
times showed the registration process to be short. Video streaming tests validated that
the throughput in the designed system was sufficient to stream 9 cameras. Three ap-
plication agents were also demonstrated in this paper. These applications validated the
correctness of the design and demonstrated the ease of implementation of image pro-
cessing applications.

References

1. Kanade, T., Saito, H., Vedula, S.: The 3d-room: Digitizing time-varying 3d events by syn-
chronized multiple video streams. Technical report, Carnegie Mellon University (1998)

2. Wilburn, B., Joshi, N., Vaish, V., Levoy, M., Horowitz, M.: High speed video using a dense
camera array. In: Proceedings International Conference on Computer Vision and Pattern
Recognition. (2004)

3. Zhang, C., Chen, T.: A self-reconfigurable camera array. In: Eurographics Symposium on
Rendering. (2004)

4. Hori, T., Nishada, Y., Yamasaki, N., Aizawa, H.: Design and implementation of a reconfig-
urable middleware for sensorized environments. In: Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Volume 2. (2003) 1845–1850

5. Gerkey, B., Vaungan, R.T., Howard, A.: The player/stage project: Tools for multi-robot
and distributed sensor systems. In: Proceedings of the 11th International Conference on
Advanced Robotics. (2003) 317–323

6. Sato, K., Maeda, T., Kato, H., Inokuchi, S.: CAD-based object tracking with distributed
monocular camera for security monitoring. In: Proceedings of the Second CAD-Based Vi-
sion Workshop. (1994) 291–297

7. Orwell, J., Massey, S., Remagnino, P., Greenhill, D., Jones, G.A.: A multi-agent framework
for visual surveillance. In: International Conference on Image Analysis and Processing.
(1999) 1104–1107

8. Veres, G., Gordon, L., Carter, J., Nixon, M.: What information is important in silhouette-
based gait recognition. In: Proceedings of IEEE Computer Vision and Pattern Recognition
conference. (2004)

9. Wagg, D.K., Nixon, M.S.: On automated model-based extraction and analysis of gait. In:
Proceedings of 6th International Conference on Automatic Face and Gesture Recognition.
(2004) 11–16

10. Henning, M., Vinoski, S.: Advanced CORBA Programming with C++. Addison Wesley
(1999)

11. Tang, J., Tong, W., Ding, J., Cai, L.: MOM-G: message-oriented middleware on grid envi-
ronment based on OGSA. In: International Conference on Computer Networks and Mobile
Computing. (2003) 424–427

