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Abstract

Two types of neural networks were trained and tested
on a real robot for a natural landmark recognition
task. The neural networks investigated were the mul-
tilayer perceptron (MLP) and learning vector quan-
tisation (LVQ). The intended application is for au-
tonomous vacuuming robots in completely unknown
indoor environments, using a novel topological world
model and region filling algorithm. A topological
world model based on natural landmarks is built
incrementally while the robot systematically cleans
the environment. The implementation of this world
model depends on robust and accurate recognition
of natural landmarks. Both types of neural network
were found to be able to successfully recognise the
natural landmarks selected.

Keywords: neural networks, vacuum cleaning, mo-
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1 Introduction

Autonomous domestic vacuum cleaners will be wel-
comed in most homes as vacuuming is a chore that
provides little intrinsic satisfaction. For a proper
clean, the robot has to completely cover all the floor
area in a room. A map of the environment ensures
that no area is missed by the robot. Cao [2] first
recognised the different requirements of map con-
struction for point-to-point navigation and region
filling navigation. In point-to-point navigation, a
map of the environment is built in an exploration
phase to expose all path segments. This map is
then used for planning optimal paths between points
during navigation. In region filling navigation, all
exposed floor area is to be covered. As a vacuum
cleaning robot has to visit all exposed floor area each
time it vacuums, it is more convenient and efficient
to build the map while vacuuming. Even though a
separate exploration phase is superfluous, vacuum-
ing navigation may be improved after the first vac-

uuming episode by using the previously built world
model. The world model also needs to contain infor-
mation specific to vacuuming, for example, the area
cleaned.

Since Cao various people have worked on the prob-
lem of world modelling for autonomous vacuuming
robots. Hofner [4] has developed a path planner for
cleaning robots working in public areas. However,
the system relies on a priori knowledge of the envi-
ronment. For domestic vacuum cleaners, it is prefer-
able that users do not have to input full floor plans
of their houses.

Gonzélez [3] uses an occupancy grid to describe the
environment. The floor area, represented in a grid
map, is subdivided into rectangular regions. As
a result, it can only handle rectangular obstacles.
Lang [8] does not use any standard world modelling
methods. The robot first follows the outermost walls
of the room. At the same time, coordinates of points
along the walls are remembered and marked as ends
of cleaning tracks. Afterwards these tracks are fol-
lowed to completely cover the area within the outer-
most walls. The problem with this approach is that
the points are remembered as absolute coordinates
only and dead reckoning is used to locate and follow
these tracks. As a result, the system is very suscep-
tible to odometry error.

Recognising the need for localisation to reduce the
odometry error, Ulrich [11] has proposed a naviga-
tion strategy that allows the robot to recalibrate its
odometry while cleaning. First the robot maps the
border of the room and records the length of walls
and compass readings along them. This is stored in
an occupancy grid. Once the border is mapped, the
robot chooses the direction with the most uncleaned
pixels and moves in a straight line in that direction
until reaching a wall or an obstacle. If the trajec-
tory ends with a wall, the robot can recalibrate its
estimation of its orientation and one x-y component
of its odometry. To keep a good estimation of its



odometry, the robot chooses paths that end succes-
sively with perpendicular walls. With this navigation
strategy, odometry estimation can be kept accurate
without the use of a complicated localisation mod-
ule. The only problem is that the cleaning paths
generated are highly redundant as already cleaned
surfaces are covered repeatedly to reach the opposite
wall for recalibration.

Landmark-based representation methods provide an
alternative to using only metrical information to con-
struct world models of environments [6]. A topo-
logical model is created using natural landmarks as
nodes, and connectivity between landmarks as edges.
This way of representing the environment is very sim-
ilar to that used by humans and other animals [10].
For example, we would say that the supermarket is
to the right of the bookstore and across the road from
the restaurant. In contrast to metrical methods,
these landmark-based methods are robust against
sensor and actuator noise. For example Zimmer [13]
successfully implemented a world modelling and lo-
calisation system using neural networks on a very
low budget mobile robot platform with only touch
and light sensors. For domestic autonomous vacuum
cleaners, the cost and size of mobile robot platforms
should be kept at a minimum. Therefore, landmark-
based methods are suitable for world modelling in
this application.

One way to recognise natural landmarks is to create
explicit rules for the types of landmark selected [6, 9].
For example, when a robot is in a concave corner,
range sensors should return short range readings for
two sides of the robot. In these representations, a
description of the environment only exists around
the landmarks. All other areas are described only as
paths between landmarks. An alternative to prede-
fined landmarks is to use a clustering algorithm, for
example self-organising maps, to partition the envi-
ronment into regions [7, 13]. A node is assigned to
each region, and neighbouring regions are connected
together with edges.

Section 2 of this paper presents a landmark-based
world model for region filling navigation. Section 3
then describes and compares two types of neural net-
works that have been implemented for recognising
natural landmarks.

2 Topological World Model

In the proposed world model, the environment to be
vacuumed is described topologically using concave
and convex corners as landmarks. These landmarks
are connected with travelling paths. Figure 1 shows
how a typical environment is represented in the pro-
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Figure 1: Topological world model for a typical en-
vironment.
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Figure 2: Symbols used in the figures.

posed world model. The symbols used in all the fig-
ures in this section are shown in figure 2. This world
model can be stored as a bidirectional graph, where
landmarks are the nodes and travel paths are the
edges. The location of the robot at any time is given
by the node it is at or the edge it is on.

The topological world model of an environment is
constructed incrementally while the robot is clean-
ing. Starting at a corner of the room, the robot
moves in a zigzag pattern down the room until it is
completely covered (figure 3). The distance between
tracks shown in figure 3 is for visualisation purposes
only. In a real implementation, there will be overlap
between tracks to ensure a more thorough clean.

The algorithm assumes cleaning starts at a corner
of a room (figure 4(a)). As shown in the figure, the
initial node has two edges. These two edges repre-
sent the two unexplored directions of the initial land-
mark. Nodes, and corresponding edges, are added to
the world model whenever the robot discovers a new
landmark. Figure 4(b) depicts the robot discovering
its second landmark while cleaning the first track
after leaving the starting corner. A new node rep-
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Figure 3: Vacuuming a room systematically using a
zigzag pattern.
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Figure 4: (a) Initial world model. (b) Addition of a
new node at the end of the first track.
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Figure 5: Search for an uncleaned region when there
are no more uncleaned tracks left at current posi-
tion. The path returned by breath-first search is
highlighted.

()

resenting the new landmark is added to the world
model. This new node is connected to the initial
node. Also added is a new edge representing the new
unexplored direction. Because of the way the world
model is constructed, information about whether an
environment is completely covered is stored in the
topology of the world model. Any unexplored, thus
uncleaned, direction is represented by an edge that
is not connected at both ends. Only when all edges
are properly connected is an environment completely
cleaned. In this case, the environment is also fully
mapped.

If the robot is at a concave corner and there are no
more free tracks in the current position (figure 5), a
breath-first search is carried out on the world model
to find the closest incompletely connected edge. The
search is done to find any uncleaned directions in the
environment. If the search fails to find an edge that is
not connected at both ends, the room is completely
covered. If the search finds such an edge, such as
the case shown in figure 5, the path returned by the
search is followed using a wall following strategy.

The zigzag cleaning pattern tries to cover the room
from top to bottom. Sometimes, a new region on
the ‘top side’ is discovered while the robot is at a
convex corner (figure 6(a)). In this case, the robot
cleans this newly found region first before moving on
to clean the rest of the room (figure 6(b)).

Free-standing obstacles are handled by first covering
the area on one side of the obstacle and then the
other side. The robot resumes its normal top-to-
bottom zigzag cleaning pattern only after both sides
of the free-standing obstacles are covered. Figure 7
depicts such a situation. In figure 7(a), the robot has
nearly finished cleaning one side of an obstacle. In
figure 7(b), the robot has moved from the first to the
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Figure 6: (a) A new ‘top side’ region is discovered.
(b) The newly discovered region is cleaned first.
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Figure 7: (a) Cleaning one side of a free standing
obstacle. (b) Moved to the other side of the obstacle
to start cleaning the other side from the top.

second side of the obstacle, and is starting to clean,
in a zigzag pattern, the second side.

The topological world model and region filling algo-
rithm proposed in this section have been successfully
implemented in simulation. A more in depth descrip-
tion of the two can be found in [12].

3 Recognition of natural land-
marks

The implementation of the world model described in
section 2 depends on accurate and robust recognition
of concave and convex corners. Two different types
of neural networks, multilayer perceptron (MLP) [1]
and learning vector quantisation (LVQ) [5], were im-
plemented for the task of recognising when the robot
is at either of the two chosen types of landmarks.
The recognition system was trained and tested on a
mobile robot in various laboratories at the univer-
sity. A picture of the mobile robot used is shown in
figure 8. It has a single ultrasonic transducer on the
top. A stepper motor is used to rotate the transducer
around to detect obstacles from all directions of the
mobile robot. A vector of 48 readings is returned



Figure 8: Maxifander in a university laboratory.

from a single 360-degree scan.

Sonar range data collected were categorised into
three groups — concave corners, convex corners and
everything else. The tasks of the two neural networks
were thus to learn this classification and to predict
which group a new sonar range vector belonged to.

3.1 Preprocessing

Both concave and convex corners are local features.
To reduce the influence of far away objects on the
recognition process, the measured range data was cut
if it was over a certain threshold. In the case of MLP,
the range vector was also normalised so its value was
within the range of the output activation function of
the neural network.

To make the classification independent of the orien-
tation of the robot, each vector of 48 range readings
was virtually rotated into the orientation most occu-
pied by obstacles [7]. After this virtual rotation, in-
dex 0 of the vector would always be pointing towards
the direction where the sonar range sensor measured
the shortest distances. This most occupied orienta-
tion was calculated using the following equation:
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where n = 48 is the number of readings in each vec-
tor, J; is a vector originating from the centre of the
robot denoting sonar sensor reading for direction ¢,
and JMOO is the vector for the most occupied orien-
tation.

Using this equation, all 48 points in the vector were
used to calculate the most occupied orientation. This
made the process of finding the most occupied orien-
tation more robust to noise than if only the shortest
range in the vector was used.

| MLP  1LVQ
concave | 90%  90%
convex 60% 100%
others 95%  88%

Table 1: Accuracy achieved on the test set for MLP
and LVQ.
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Figure 9: Classification with (a) MLP (b) LVQ.

3.2 Multilayer Perceptron

Backpropagation with a momentum term and flat
spot elimination was used to train a three layer feed-
forward neural network. Networks with various con-
figurations were trained multiple times on this recog-
nition problem using the training set to find the net-
work that achieved the lowest mean square error on
the test set. The parameters that were varied in
the networks were number of hidden layer neurons,
learning rate and momentum term.

The lowest mean square error achieved was 0.0955
with 8 hidden neurons, a learning rate of 0.4 and
a momentum term of 0.25. Classification accuracy
achieved in the test set is shown in table 1, where
accuracy is defined as the number of accurate pre-
dictions divided by the total number of samples in
the test set. The result of classification using MLP
on a test environment is shown in figure 9(a).

3.3 Learning Vector Quantisation

According to Kohonen, all the different LVQ vari-
ants should yield similar accuracy [5]. OLVQ1 was
picked for this problem because of its fast training
time. Networks with different numbers of neurons,
or codebook vectors, distributed among the three
classes were trained for 40 epochs. A network with 30
neurons yielded good results. The accuracy achieved
is shown in table 1. The result of classification using
LVQ on the test environment is shown in figure 9(b).



3.4 Discussion

Supervised neural networks were chosen for this ap-
plication because the landmark types to be recog-
nised were predefined. The neural networks were
thus trained to generate rules statistically to clas-
sify sonar range data. This is different from exist-
ing use of neural networks in landmark-based world
models, where unsupervised neural networks parti-
tion environments into separate regions according to
similarity of input sensory data [7, 13].

It can be seen from table 1 that the two neural net-
works gave different accuracy rates for the three cat-
egories to be classified. Despite the difference in ac-
curacies, the resultant classification was quite simi-
lar (see figure 9). This is due to the fact that mis-
classification has mostly occurred at the boundaries
between different zones. Misclassification at bound-
aries is insignificant because it does not affect the
implementation of the world model proposed in sec-
tion 2. This shows that accuracy alone is not a good
indication on how well a neural network performs for
the target application.

Also note that desks and chairs were not present in
the training set. They were added to the test envi-
ronment to see how well the two networks generalised
on unseen objects. It can be seen from figure 9 that
both networks generalised well to handle the desks
and chairs. It can be concluded that both types of
neural network are suitable for this application.

4 Conclusions

In this paper, a novel topological world model and
region filling algorithm for autonomous vacuuming
robots is presented. Humans, and other animals,
model their environment using topologies of land-
marks. This type of representation does not rely
solely on an absolute coordinate system. Therefore, a
coherent world model can be constructed with noisy
sensor data as long as the landmarks are properly
recognised. This is especially useful in completely
unknown environment where no a prior: world model
is available for localisation.

Landmark recognition is central to the implementa-
tion of the proposed world model on a real robot.
This paper shows that the natural landmarks se-
lected can be easily recognised by a neural network.
Even though the work presented here is in its early
stages, it still shows that it is feasible to carry out re-
gion filling navigation using a landmark-based world
model with obstacles of various shapes.
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