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Abstract. In applications such as vacuum cleaning, painting, demining
and foraging, a mobile robot must cover an unknown surface. The ef-
ficiency and completeness of coverage is improved by the construction
of a map while the robot covers the surface. Existing methods gener-
ally use grid maps, which are susceptible to odometry error and may
require considerable memory and computation. We propose a new “slice
decomposition” ideally suited to coverage by a simple zigzag path. Cell
boundaries are large, easily detectable natural landmarks. Therefore, the
decomposition is robust against uncertainty in sensors. It can also handle
a wider variety of environments. The proposed method has been evalu-
ated using simulation and real robot experiments.

1 Introduction

In a coverage application, a mobile robot must visit all the reachable surface
in its environment. While coverage is similar to exploration, an exploring robot
moves and sweeps its long range sensors, so as to sense all of its environment.
During a coverage application, the robot or a tool must pass over all floor surface.

If the environment is unknown, the robot must use a strategy that ensures it
covers all the space. It must use sensors to gather information about obstacles
as it moves, and it must formulate and remember some form of map, so that it
may return to areas it has seen but not yet covered.

The algorithmic strategy of “divide and conquer” is a powerful technique
used to solve many problems, and many mapping procedures carry out a pro-
cess of space decomposition, where a complex space is repeatedly divided until
simple subregions of a particular type are created. The problem at hand is then
solved by applying a simpler algorithm to the simpler subregions. Exact cell de-
compositions [1] and occupancy grids [2] are examples of such maps. Coverage
algorithms commonly use some form of space decomposition as a map, because
covered areas can be stored easily by marking individual subregions.

Occupancy grids are a widely used map representation for coverage algo-
rithms. It is straightforward to mark covered areas in a grid map. Zelinsky used
the distance transform of a grid map [3]. A coverage path is formed by select-
ing the unvisited neighbouring cell with the highest distance transform. Unlike
other coverage algorithms, a goal location must be selected. Gabriely and Rimon



incrementally subdivide the environment into disjoint grid cells, while following
a spanning tree of the partial grid map [4]. A disadvantage of grid maps is the
requirement for accurate localisation to create and maintain a coherent map [5].
Grid maps also suffer from exponential growth of memory usage because the
resolution does not depend on the complexity of the environment [6]. Also, they
do not permit efficient planning through the use of standard graph searches [6].

Exact cell decomposition divides a complex structure S into a disjoint com-
ponent cells, whose union is exactly S. The boundary of a cell corresponds to a
criticality of some sort. Exact cell decomposition methods are commonly used in
path planning for point to point tasks. The most common example is trapezoidal
decomposition [1]. It is formed by sweeping a line L across the environment, and
creating a cell boundary whenever a vertex is encountered. Obstacles are lim-
ited to polygons. Therefore, each cell of a trapezoidal decomposition is either
a trapezoid or a triangle. For path planning, the decomposition is first reduced
to a connectivity graph representing the adjacency relation among cells [1]. The
associated connectivity graph is searched to find paths between any two cells.

However, trapezoidal decomposition creates convex cells that are unneces-
sarily small, and therefore inefficient, for coverage purposes. Some non-convex
shapes can also be covered by simple coverage patterns. For example, the two
cells on each side of the obstacle in Fig. 1(a) can be merged and a simple zigzag
pattern shown in Fig. 1 can still cover the combined cells. Based on merging mul-
tiple cells in trapezoidal decomposition, Choset and Pignon proposed the first
exact cell decomposition specifically designed for coverage [7]; the boustrophe-
don decomposition, shown in Fig. 1(b), signifying the relationship between the
decomposition and the zigzag. Like trapezoidal decomposition, boustrophedon
decomposition is limited to environments with only polygonal objects.

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

(a)

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

(b) (c)

Fig. 1. (a) Trapezoidal decomposition creates cells that are unnecessarily small for
coverage tasks. (b) Boustrophedon decomposition reduces the number of cells by com-
bining multiple cells that can be covered by a zigzag. (c) The rectangular coverage
pattern used in CCR and Morse decomposition.

Butler proposed an exact cell decomposition for rectilinear environments,
for his coverage algorithm CCR [8]. Cell boundaries are formed when an obsta-
cle boundary parallel to the sweep line is encountered. While trapezoidal and
boustrophedon decompositions cannot handle obstacle surfaces parallel to the



sweep line, the criticality in CCR is specially defined for rectilinear environ-
ments. Another difference is that CCR is calculated online by contact sensing
robots, simultaneously with the coverage process. In other words, an associated
coverage algorithm is devised to use a partial cell decomposition for coverage
path planning, at the same time updating the map when new information be-
comes available. Instead of a zigzag, CCR uses a rectangular coverage pattern
that includes retracing, shown in Fig. 1(c). The retracing is added to ensure wall
following on both side boundaries, because a contact sensing robot cannot detect
obstacles except when wall following. If an opening in the side boundary occurs
between consecutive strips of the zigzag, the robot will miss it.

Acar et al. introduced Morse decomposition [9] which can handle a larger set
of environments than boustrophedon decomposition and CCR. Cell boundaries
in Morse decomposition are critical points of Morse functions. Put simply, a
cell boundary occurs when the sweep line encounters an obstacle whose surface
normal is perpendicular to the sweep line. Morse decomposition generalises bous-
trophedon decomposition to include non-polygonal obstacles. However, it cannot
handle surfaces parallel to the sweep line. This excludes rectilinear environments.
Similarly to CCR, Morse decomposition also has an online decomposition algo-
rithm. However, Morse decomposition cannot use a zigzag to cover individual
cells. It uses the rectangular pattern in Fig. 1(c). The wall following offered by
the pattern is needed because critical points occurring on the side boundary can-
not be detected even with unlimited range sensors, except when wall following
[10]. This is due to the difficulty in detecting critical points of Morse functions.

This paper introduces a new exact cell decomposition for complete coverage
path planning, where the decomposed regions are precisely suited to a zigzag
coverage pattern, with no retracing. The length of the coverage path is greatly
reduced. Cell boundaries are large scale features that have physical extension
over time, and can be detected even by noisy and inaccurate sensors. Also, our
algorithm works on a larger variety of environments, including both rectilinear
and non-rectilinear ones. Obstacles can be polygonal, or curved. Lastly, the cell
decomposition can be constructed online, in an unknown environment, while the
robot covers the space [11].

Section 2.1 explains the slices and segments created by a sweep line. Sec-
tion 2.2 defines the criticality for cell boundaries. Section 2.3 presents the slice
decomposition algorithm. Section 2.4 discusses the effects of step size and sweep
direction. Section 3 presents results and section 4 discusses the work.

2 Slice Decomposition

2.1 Slice and segments

A slice decomposition is created by sweeping a line from the top of an environ-
ment to the bottom. There are two types of region — obstacle and free space. At
any time, the sweep line intersects a number of free space and obstacle regions
determined by the topology of the environment and position of the sweep line.



We call the arrangement of regions intersected by the sweep line a slice and the
regions within segments.

Fig. 2(a) shows an obstacle with the sweep line at two different positions.
The slices created are shown on the right; at position 1 the slice contains one
free space segment, an obstacle segment, and then another free space segment.
The slice at position 2 has three free space segments and two obstacle segments.
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Fig. 2. (a) The arrangement of segments in slices made by the sweep line changes as it
sweeps through the environment. (b) The number of segments present in a slice changes
as the sweep line enters an obstacle.

In Fig. 2(b), at position 1, the slice contains only one free space segment.
Obstacle segments begin to emerge at position 2, where the sweep line first
intersects with the object.

The sweep line can be viewed as a ray passing through the segments on a slice.
The ray intersection test [12] shows that every time an intersection is made, the
line is in a different type of region. This guarantees that each segment is bounded
by two intersection points, and also implies that the sweep line always has an
even number of intersections on the slices, since the ray always starts and ends
in the obstacle region outside the boundary.

2.2 Criticality

Two slices Sa and Sb are consecutive if they are from sweep line positions one
time step apart. If the sweep line moves by a distance δx for each time step, and
the slices Sa and Sb are from positions xa and xb respectively, then slice Sa and
slice Sb are consecutive slices if and only if | xa − xb |= δx.

Cell boundaries occur when there is an abrupt change in the topology between
segments in consecutive slices. There are two situations where this can happen:

1. A segment in the previous slice is split by the emergence of a new segment.

– An obstacle segment emerges within a free space segment, as in Fig. 3(a).
– A free space segment emerges within an obstacle segment, as in Fig. 3(b).

2. A segment from the previous slice disappears in the current slice.

– An obstacle segment disappears, as in Fig. 3(c).
– A free space segment disappears, as in Fig. 3(d).
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Fig. 3. (a), (b) One segment splits into multiple segments. (c), (d) Multiple segments
merge into a single segment.

2.3 Decomposition Algorithm

The slice decomposition is formed by maintaining a list D of active obstacle and
free space cells with segments present on the slices created by the sweep line as
it sweeps through the environment, summarised in Algorithm 1. The history of
list D, ie all the cells that have appeared in D, forms the decomposition. The
sweep stops to process and update list D whenever a criticality occurs.

Algorithm 1 Offline Slice Decomposition

1: c ∈ {free space cell, obstacle cell}
2: for all time t do

3: Move sweep line downwards by δx

4: Dt−1 = (. . . , ci−2, ci−1, ci, ci+1, ci+2, . . .)
5: for all segments in Dt−1 do

6: if emergence inside ci then

7: (ci)← (ce−1, ce, ce+1)
8: Dt = (. . . , ci−2, ci−1, ce−1, ce, ce+1, ci+1, ci+2, . . .)
9: if ci disappears then

10: (ci−1, ci, ci+1)← (cd)
11: Dt = (. . . , ci−2, cd, ci+2, . . .)

The algorithm has two loops, one for moving the sweep line from top to
bottom (line 2), the other for inspecting segments in the previous and the current
slice for topology changes (line 5). At line 1 are specified all cells that are either
free space cells or obstacle cells. Within the first loop, line 3 shows that the sweep
line is moved by δx for each time step. Line 4 gives the format of the list D at
the previous time step Dt−1. Lines 6 and 9 within the inner loop correspond to
the two cases of criticality. For segment emergence (line 6), the segment that is
split into two halves is replaced by three separate segments (line 7). The three
segments belong to new cells and are therefore given new cell IDs, ce−1, ce, ce+1.
These new cell IDs identifying this slice contain a cell boundary. Line 8 shows



the list Dt after the changes. The updates for segment disappearance are shown
in lines 9 to 11. The cell that contains the disappeared segment, along with its
two neighbours, are replaced in D by a single new cell (line 10). Line 11 shows
the list Dt after the changes.

In the example is in Fig. 4, fn are free space cells and on are obstacle cells.
Initially, the sweep line intersects only the first free space cell f1, giving just that
one space cell, Dt = (f1). At the first event, an obstacle segment emerges and
the first cell f1 is split. The decomposition Dt then changes to contain three cells
– a free space cell, an obstacle cell and another free space cell, Dt = (f2, o1, f3).
Then obstacle cell o1 is split when a free space cell emerges. The decomposition
Dt changes to contain five cells, (f2, o2, f4, o3, f3). Next Dt changes to three
cells, (f5, o3, f3), as the left side bulge is passed. Finally the decomposition Dt

contains only one free space cell f6 when the sweep line exits the obstacle.

f2 f3

f3o3f4

o2
f2

f5
o3 f3

f6

o1

f1

Dt

(f1)

(f2, o1, f3)

(f2, o2, f4, o3, f3)

(f5, o3, f3)

(f6)

Fig. 4. An example of slice decomposition.

The algorithm tracks both free space and obstacle cells, although only the
free space cells are of interest, since mobile robots cannot move inside obstacles.

2.4 Effect of Step size and sweep direction

Since slice decomposition uses a discrete line sweep process, the step size between
consecutive slices therefore affects the decomposition yield for a given environ-
ment. In practice the step size is determined by the width of the robot, to ensure
no space is left uncovered in consecutive sweeps. If the step size is reduced to be
infinitesimally small, δx → 0, then the sweeping process becomes a continuous
sweep, like other exact cell decompositions. However, slice decomposition also
works for step sizes larger than infinitesimal.

To capture all cells in a particular environment, the maximum step size has
to be smaller than the height of the smallest cell

δx ≤ min h(ci) (1)

δx is the step size of the line sweep and h(ci) is the height of the i-th cell.
Equation 1 guarantees that all cells will be present in at least one slice.



Fig. 5 illustrates the effect of varying the step size, on the decomposition
created. When the steps are small, all cells in the environment are captured.
For example, in Fig. 5(a), the step size is small enough to guarantee a sweep
line to pass through the small cell between the two lobes at the top of the
obstacle. When the step size is increased to the height of the smallest cell, ie
δx = min h(ci), the second sweep position in Fig. 5(a) just barely touches the
cell. If the step size is further increased, the smallest cell may be missed entirely,
as is the case in Fig. 5(c).
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Fig. 5. Effect of step size on decomposition produced. All sweep lines are assumed to
be slightly above the obstacle surface they are touching. The list of cells on the right
shows where changes (criticalities) occur. (a) δx = 1

2
×min h(ci), (b) δx = min h(ci),

(c) δx > min h(ci).

When equation 1 is satisfied, the decompositions created are independent
of differences in the step size. Compare the slice decomposition in Fig. 5(a)
and 5(b). Although the cells are discovered at different positions, the overall
transitions of the list D are the same.
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Fig. 6. (a) Forward and reverse sweep yield the same slice decomposition. (b) Rotation
changes slice decomposition.

The decomposition created is the same whether the sweeping is in the forward
(top to bottom) or the reverse (bottom to top) direction. The decomposition is
dependent only on the position of the sweep lines, as illustrated in Fig. 6(a). It
shows the same sweep line positions as Fig. 5(a), but the obstacle is upside down.



The topology changes in the list Dt are essentially the same in both figures. The
only change is to the numbering of cells.

However, if the environment is rotated, the decomposition will be different.
Equation 1 guarantees the same decomposition being created only for a particu-
lar sweep angle. Fig. 6(b) shows the same obstacle as in Fig. 5, but rotated 90o.
It can be seen that the decomposition will be different from that given in Fig. 5
no matter how small the step size is. This is not a shortcoming of a discrete
sweep algorithm because continuous sweep based exact cell decomposition, such
as trapezoidal decomposition, is also affected by rotational transforms.

3 Results

Slice decomposition was evaluated both in simulation and with a Khepera robot.
In all the experiments, the environment is unknown to the robot and the slice
decomposition is created online during the coverage process [11].

Fig. 7(a) shows a “normal environment” and slice decomposition. The sim-
ulated robot creates a topological map that embeds the decomposition. The
horizontal edges of the topological map correspond to the cell boundaries. The
environment is divided into 12 free space cells. Some vertical edges cross over the
obstacles, because they are simply drawn as straight lines linking their nodes.

Fig. 7(b) shows a more unusual arrangement of obstacles. The free space in
the spiral is divided into 9 free space cells.

(a) (b)

Fig. 7. Slice decomposition for (a) a normal environment, (b) a spiral environment.

Slice decomposition was also implemented and tested on the 53mm diameter
Khepera robot [11]. It has 8 infra-red sensors which can detect objects up to 30
to 40mm away, and optical wheel encoders for dead reckoning. Fig. 8(a) shows
the area covered and Fig. 8(b) the path the robot took in one of the experiments.
The cell boundaries of the slice decomposition are shown in Fig. 8(c).

The step size ∆x is set to the diameter of the robot, since we want to cover
all the surface between consecutive strips of the zigzag. Since the robot is smaller
than the free space cells, the step size ∆x is always smaller than the height of



Fig. 8. Coverage with a Khepera robot (a) area covered (b) path taken (c) slice de-
composition created

the smallest cell; equation (1) is satisfied and all features in the environment are
captured. If the robot is larger than some of the cells, then it cannot enter and
cover these cells. The slice decomposition created by such a robot will therefore
not have a representation of these cells.

4 Discussion

Criticalities in exact cell decompositions are usually defined as small features,
such as vertices in trapezoidal decomposition [13] and critical points in Morse
decomposition [9]. In comparison, criticality in slice decomposition is defined
using large features, segments. For example, obstacle segments are detected as
proximity to obstacles along the sweep line [11]. These large features have phys-
ical attributes that are detectable over time. Spurious sensor errors are filtered
out through averaging. As a result, the detection becomes robust against noisy
and inaccurate sensing [14].

Trapezoidal decomposition forms regions more frequently than slice decom-
position, by dividing the space as the sweep line crosses every vertex. While the
larger regions formed by slice decomposition may not be convex, the regions
are still covered by a simple zigzag algorithm, since the non–convex sides of the
space are perpendicular to the zigs and zags.

The concept of non-zero step sizes is incorporated in slice decomposition. If
the robot moves in a zigzag path to cover individual cells in the decomposition,
then the long strips in the zigzag are the sweep lines. The distance between strips
in the zigzag path becomes the step size in the slice decomposition.

Since mobile robots cannot move inside obstacles, some free space cells must
be swept in the reverse direction, for example in the L-shaped obstacle of Fig. 7(a).

Slice decomposition can handle a larger variety of environments. Boustrophe-
don decomposition can only handle polygonal obstacles. CCR can only handle
rectilinear environments. Morse decomposition is more general and can handle
obstacles with smooth surfaces, but is only defined for non-rectilinear environ-
ments because boundaries parallel to the sweep line are degenerate cases for
Morse functions. In comparison, slice decomposition is defined on changes in the



topology of slices. It can handle any environment with polygonal and smooth-
surfaced objects, including rectilinear ones, for example that shown in Fig. 7(b).

5 Conclusion

This paper presents a new exact cell decomposition for coverage. Slice decom-
position uses changes in topology to decompose an environment, where each cell
intersects with the sweep line twice as it passes over. Cells formed can be covered
by a zigzag. Our work uses large features for defining cell boundaries and can
detect boundaries robustly. It also can cover a wider variety of environments.
The decomposition is tested with simulation and real robot experiments.
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