Validation of E-Science Experiments using a
Provenance-based Approach

Sylvia C. Wong, Simon Miles, Weijian Fang, Paul Groth and Luc Moreau
School of Electronics and Computer Science
University of Southampton, UK

Abstract

E-science experiments typically involve many distributed services maintained by different or-
ganisations. As part of the scientific process, it is important for scientists to be able to verify the
correctness of their own experiments, or to review the correctness of their peers’ work. There is no
existing framework for validating such experiments. Users therefore have to rely on error checking
performed by the services, or adopt other ad hoc methods. This paper introduces a platform inde-
pendent framework for validating workflow executions. The validation relies on reasoning over the
documented provenance of experiment results and semantic descriptions of services advertised in a
registry. This validation process ensures experiments are performed correctly, and thus results gen-
erated are meaningful. The framework is tested in a bioinformatics application that performs protein

compressibility analysis.

1 Introduction

Very large scale computations are now becom-
ing routinely used as a methodology to under-
take scientific research: success stories abound
in many domains, including physics (griphyn.
org), bioinformatics (mygrid.org.uk), engi-
neering (geodise.org) and geographical sci-
ences (earthsystemgrid.org). These large
scale computations, which underpin a scientific pro-
cess usually referred to as e-Science, are ideal can-
didates for use of Grid technology [7].

E-Science experiments are typically formed by in-
voking multiple services, whose compositions are
modelled as workflows [8]. Thus, experimental re-
sults are obtained by executing workflows. As part
of the scientific process, it is important for scientists
to be able to verify the correctness of their own ex-
periments, or to review the correctness of their peers’
work. Validation ensures results generated from ex-
periments are meaningful.

Traditionally, program validation has been carried
out in two complementary manners. On the one
hand, static verification analyses program code be-
fore it is executed and establishes that the program
satisfies some properties. These verifications are ex-
tensively researched by the programming language
community. Examples include type inference, es-
cape analysis, model checking. They typically de-
pend on the semantics of the programming language
being analysed. On the other hand, static verifica-
tion is complemented by run-time checking, which

is carried out when program executes, and verifies
that data values satisfy constraints, expressed by ei-
ther types or assertions.

Such validation methods suffer from limitations in
the context of large e-Science experiments, poten-
tially carried out in open environments. First, pro-
grams (or workflows) may not be expressed in lan-
guages that analysis tools operate on, or may not be
directly available because they are exposed as ser-
vices, hereby preventing static analysis. Second, in
general, in open environments, we cannot make the
assumption that services always check that their in-
puts or outputs match their interface specifications
(if available at all). Furthermore, such interfaces
may be under-specified (for instance, many bioin-
formatics services tend to process and return strings
encoding specific biological sequence data). As are-
sult, no guarantee exists that types will be checked
dynamically. Third, studies of everyday user prac-
tice have shown that rapid development cycles are
being adopted by scientists, in which workflows are
frequently modified and tuned and scientific models
are evolved accordingly. As a result, it is important
for scientists to be able to verify that previous ex-
perimental results are compatible with recent criteria
and requirements. Since these models did not neces-
sarily exist at experiment design or execution time,
it is a necessity to perform such validation after the
experiment has been completed.

The provenance of a piece of data denotes the
process by which it is produced. Provenance-aware
applications are applications that record documen-

tation of their execution so that the provenance of
the data they produce can be obtained and reasoned
over. In this paper, our thesis is that provenance al-
lows us to verify the validity of experiments after
they have been conducted. Specifically, our contri-
butions are: (a) a provenance-based architecture to
undertake validation of experiments; (b) the use of
semantic reasoning in undertaking validation of ex-
periments; (c) an implementation of the architecture
and its deployment in a bioinformatics application
in order to support a set of use cases. Our experi-
mentation with the system shows that our approach
is tractable and performs efficiently.

The structure of the paper is as follows. Section 2
describes some use cases that require experiment
validation. Section 3 briefly discusses current ap-
proaches to e-Science experiment validation and ex-
plains why it is necessary to perform validation after
an experiment was executed. Section 4 introduces
the proposed framework for validation of workflow
execution. Section 5 then describes how the archi-
tecture can be applied to the use cases introduced
in Section 2. In Section 6, we discuss how semantic
reasoning is essential in properly establishing the va-
lidity of experiments. Section 7 then presents results
from an implementation of the validation framework
with an e-science application (specifically, the pro-
tein compressibility analysis experiment). The paper
finishes with conclusions in Section 8.

2 Use Cases

The motivation for this work comes from real prob-
lems found by scientists in their day to day work.
In this section, we introduce a number of use cases
in the bioinformatics domain where it is necessary
to perform some form of validation of experiments
after they have been completed.

Use Case 1 (Interaction validity, interface level)
A biologist, B, performs an experiment on a protein
sequence. One stage of this experiment involves
generating a pre-specified number of permutations
of that sequence. Later, another biologist, R,
judges the experiment results and considers them
to be suspicious. R determines that the number of
permutations specified was an invalid value, e.g. it
was negative. O

In this example, we consider that the service
provider has specified a restriction for the number
of permutations to non-negative integers in the ser-
vice interface because the parameter only makes
sense for non-negative integers. However, this does
not guarantee that the service will validate the data
against the schema at run-time. In general, whether

validation is carried out at run-time is service spe-
cific.

In Use Case 1, B could have entered a negative
value for the number of permutations. In this case,
the value is incorrect because it does not conform to
the restrictions and requirements as specified by the
interface document of the service. By validating the
experiment using its provenance, R can determine
that B entered an invalid value for the number of
permutations, and thus the results generated by the
experiment were not meaningful.

Use Case 2 (Interaction validity, domain level)

A bioinformatician, B, downloads a file containing
sequence data from a remote database. B then
processes the sequence using an analysis service.
Later, a reviewer, R, suspects that the sequence may
have been a nucleotide sequence but processed by
a service that can only analyse meaningfully amino
acid sequences. R determines whether this was the
case. U

Nucleotides and amino acids are both components
of biological sequences. The symbols used for nu-
cleotides are a subset of those used for amino acids.
Therefore, it is not always possible to detect which
type of sequence is used by superficially examining
the data. The service used in Use Case 2 could re-
quire an amino acid sequence as its input. If a nu-
cleotide sequence was accidentally used rather than
an amino acid sequence, the problem would not
be detected at run-time, and the experiment results
would not be meaningful.

Given that many bioinformatics services operate
on strings, the biological interpretation of a piece of
data is information not directly available from inter-
face specification, and cannot be easily derived from
the data itself. Typically, such additional description
that is useful or of interest to the user has to be made
explicit elsewhere [15]. Thus, in Use Case 2, we say
that while the interaction in the experiment is correct
according to service interface specifications, it is in-
correct according to the domain level understanding
of the problem.

Use Case 3 (Ontology revision) A bioinformati-
cian, B, performs an experiment on a sequence
downloaded from a remote database. Later, another
bioinformatician, D, updates the ontology that clas-
sifies sequences stored in the database to correct
an error in the previous version. B checks if the
experiment is compatible with the new version of
the ontology. O

Ontologies are invaluable in describing domain
specific knowledge such as DNA and RNA se-
quences are subtypes of nucleotide sequences, as il-

lustrated by the Gene Ontology [4]. If a service ad-
vertises that it accepts nucleotide sequences, we can
infer that the service can also meaningfully process
DNA and RNA sequences.

Similar to Use Case 2, the bioinformatician B in
Use Case 3 wants to validate the interactions in the
experiment according to their domain-level charac-
terisation (specifically, biological sequence types).
However, in this use case, the ontology describing
the gene sequences is revised after the experiment
has been conducted. Therefore, to ensure results of
the experiment are not affected by this error in the
ontology, B validates the execution against the re-
vised ontology.

Use Case 4 (Conformance to plan) A biologist, B,
creates a plan for an experiment by defining the type
of analysis to perform at each stage of the exper-
iment. B then performs an experiment that is in-
tended to follow the plan. Later another biologist,
R, determines whether each operation performed in
the experiment fulfilled an intended operation in the
plan. O

In Use Case 4, the plan defined by B is abstract
in nature. To verify whether the experiment con-
formed to the original plan, R examines the tasks
the services perform. In other words, R is interested
in verifying the properties of the services, not the
interactions between the services. This is in con-
trast to the previous use cases, where the validation
is performed on the types of the data provided and
accepted by the services.

Use Case 5 (Patentability of results) A biologist,
B, performs an experiment. Later, B wishes to patent
the results. A reviewer, R, checks that no service used
in the experiment has legal restrictions such that the
results could not be patented. O

In Use Case 5, R is interested in attributes such as
condition of use, legal constraints and patents. These
conditions are (probably) unforeseen by biologist B
when he designed and performed the experiment.

3 Current Validation Approaches

Web Services are described by a WSDL interface [3]
that specifies the operations they support, the inputs
they expect, and the outputs they produce. The in-
puts and outputs of an operation are part of a mes-
sage and their structure, referred to as interface type,
is specified using XML Schema [6]. It is generally
(but not always) the role of the service provider to
publish interface type definitions.

We augment interface types with further descrip-
tions that characterise additional invariants of inter-
est to the user. For instance, in the previous section,

we discussed a characterisation of data in domain-
level terms. OWL-S [11] allows for semantic types
expressed using the OWL ontology to be added to
the service profile. Given that the world is evolving,
we consider that several views about an object may
co-exist. Hence, it is permitted to associate several
semantic types to a given entity: this is the approach
adopted by myGrid [15], which also relies on the
OWL ontology language to give a classification of
biological data. Such descriptions are not restricted
to inputs and outputs, but can be annotations to ser-
vice interfaces that identify the functions they per-
form or the resources they rely upon. Such informa-
tion may be provided by the service provider, or by
a third party, and published in a registry such as the
myGrid/Grimoires registry [12].

In the introduction, we discussed two commonly
used forms of validation: static and dynamic. Static
validation operates on workflow source code. The
vast array of static analyses devised by the pro-
gramming language community is also applicable
to workflows, such as type inference, escape anal-
ysis, etc. Some analysis were conceived to address
problems that are specific to workflows. Exam-
ples of these include workflow concurrency analysis
[10], graph-based partitioning of workflows [1], and
model checking of activity graphs [5]. Yang et al.
[17] devised a static analysis to infer workflow qual-
ity of service. However, the workflow script may not
always be available, or it may be expressed in a lan-
guage for which we do not have access to a static
analyser.

Hence, validation may be performed at run-time.
In its simplest form, validation is service-based.
In Web Services, a validating XML parser veri-
fies all XML documents sent to a service conform
to its specified schema. Thus, if all the services
used in a workflow employ validating parsers, the
workflow execution is guaranteed to satisfy inter-
face types required by services. We note however
that many XML parsers are non-validating by de-
fault, such as Apache Axis (ws.apache.org/
axis)and JAXB (java.sun.com/xml/jaxb),
because validation is an expensive operation that af-
fects the performance of web services. Therefore,
most XML parsers used by web services simply
check if XML documents are well-formed, and if
they can be unmarshalled into compiled classes.

Other forms of validation and analysis can take
place at run-time. The Pegasus planner is capable of
analysing a workflow and re-planning its execution
at run-time so as to make use of existing available re-
sources [2]. Policy languages such as KAoS are used
to perform semantic reasoning and decide if access
can be granted to services as they are being invoked
[14].

Use Cases 3 and 5 have identified that it is some-
times necessary to validate an experiment after it
has been executed. Third parties, such as review-
ers and other scientists, may want to verify that the
results obtained were computed correctly according
to some criteria. These criteria may not be known
when the experiment was designed. As science pro-
gresses, criteria evolve. Thus, it is important that
previously computed results can be verified accord-
ing to a revised set of criteria.

4 Provenance-based Validation

We propose a provenance-based approach to work-
flow validation. The provenance of an experiment
contains a record of all service invocations such that
the information is sufficient to reproduce the exact
experiment. A provenance-based approach lends it-
self easily to third party validation as scientists can
share provenance data with other scientists. Also, as
validation criteria evolve, the validation process can
be repeated without re-executing the experiment.
Figure 1 explains our proposed provenance-based
semantic validation framework. Service providers
host services on the Grid and advertise them in a
registry. Since we wish to support multi-level de-
scriptions beyond interface types, possibly provided
by third parties, the registry provides support for
semantic annotations. The registry allows users to
publish metadata about services, individual opera-
tions (within a service), their inputs and outputs. It
also supports metadata-based service discovery.
Users construct workflows for their experiments.
The workflow enactment engine queries the registry
for services that provide the tasks requested in the
workflow and calls the appropriate services in the
correct order. The services and the workflow en-
actment engine document the execution of the ex-
periment using a provenance store. We refer to the
provenance of some experimental result as the docu-
mentation of the process that led to that result. Each

service providers

provide
!

invoke

record
provenance

advertise

semantic
annotation
registry

provenance
store

workflow

enactment engine record

provenance

query

semantic

get advertisements validator get provenance records

Figure 1: Provenance-based validation architecture.

1sValid «— true
for all activities a do

(R, A) «— Compute(a)

isValid «— isValid A (A satisfies R)
end for

Figure 2: Algorithm for provenance-based valida-
tion. Required value R and actual value A are calcu-
lated using the Compute function shown in Figure 3

Function: Compute values R and A
Require: activity a
Get p-assertions from provenance store
Get advertisements from registry
Get user supplied information
R « Compute requirements
A «— Compute trace

Figure 3: Algorithm to compute required value R
and actual value A.

client and service (collectively, actors) in an exper-
iment can assert facts about that experiment, called
p-assertions (assertions, by an actor, pertaining to
provenance). A p-assertion may state either the con-
tent of a message sent by one actor to another, an
interaction p-assertion, or the state of an actor when
an interaction took place, an actor state p-assertion.
Examples of actor state p-assertions range from the
workflow that is being executed, to the amount of
disk and CPU a service used in a computation.

After the experiment is carried out, validation is
performed using the algorithm outlined in Figure 2.
Validation is done on a per activity basis. In this
context, activities are service invocations in the ex-
periment. The list of activities in an experiment is
provided by the provenance store. For each activity,
a, the validator computes two values for compari-
son — a required value of some property, IR, and the
actual value of that property used in the activity A.
The validator then performs semantic reasoning over
A and R to see if A fulfils all the requirements spec-
ified in R. If A satisfies R, then a is deemed to be
valid. An experiment is valid when all activities are
proved to be valid.

Figure 3 explains how required value R and ac-
tual value A are calculated for a given activity a.
First, the validator obtains p-assertions for a. Us-
ing these p-assertions, the validator fetches services’
advertisements and semantic annotations from the
registry. The user supplies extra information needed
for validation, such as the bioinformatics ontology in
Use Case 3 and the legal descriptions in Use Case 5.

The type of information to obtain from the prove-
nance store, the registry and the user depends on the

Get service/operation names from p-assertions
R «— Get WSDL document from registry
A « Get input data from p-assertions

Figure 4: Interface-level interaction validation:
computing required value R and actual value A for
activity a.

validation to be performed. Similarly, the semantic
reasoning needed to compare required value R and
actual value A also depends on the type of valida-
tion. The next section explains how the the semantic
validator implements the various types of validations
identified by the use cases using the algorithms in-
troduced in this section. Section 6 then discusses the
semantic reasoning performed.

5 Validation Algorithms for Use Cases

Figure 3 presented a generic algorithm for comput-
ing required value R and actual value A of an ac-
tivity by querying the provenance store and the reg-
istry. In this section, we will apply the algorithm in
Figure 3 to the use cases in Section 2.

5.1 Interface level interaction validity

Use Case 1 requires the validation of input XML
documents (actual value A) against schemas (re-
quired value R). These are computed according
to Figure 4. The validator queries the provenance
store for the service and operation names. These
names are used to obtain the relevant WSDL doc-
ument from the registry. The provenance store also
provides the validator with a copy of the XML doc-
uments passed to the activity in the experiment.

5.2 Domain level interaction validity

To support Use Cases 2 and 3, we compare the
domain-level types of the data expected by the activ-
ity (R) with the actual data used (A). The domain-
level type of the actual data passed to activity a is
derived from the output of preceding operation p.
(By preceding, we refer to the service that precedes
activity a in terms of data flow, not time). In the sim-
plest case, an interaction is considered domain-level
valid if A is either the same type or a subtype of R.
Figure 5 summarises how the two values R and A
are computed.

5.3 Activity validity

To support Use Cases 4 and 5, we verify that the
metadata associated with services conforms to cer-

Get service names of a from p-assertions
Get service names of p from p-assertions
R «— Get input type of a from registry

A «— Get output type of p from registry
Get ontology from user

Figure 5: Domain-level interaction validation: com-
puting required value R and actual value A for activ-
ity a. The input and output types here refers to the
domain-level types.

Retrieve service names of a from p-assertions
A «— Get metadata of a from registry

R + Get requirements from user

Get ontology from user

Figure 6: Activity validation: computing required
value R and actual value A for activity a.

tain criteria. We use the myGrid profile [16] to iden-
tify the tasks services perform. (The myGrid pro-
file is an extension of the OWL-S profile [11]). The
process of verifying the activity validity of an ex-
periment involves checking that each activity’s pro-
file satisfies the requirements specified for it. The
requirement can be different for each activity, as in
Use Case 4. In other situations, the requirement can
be the same for every activity in the workflow, such
as in Use Case 5. An activity is considered to fulfil
required value R if the metadata annotation for the
operation (A) is of the same class or is a subclass of
R. Figure 6 shows the algorithm used for computing
the values R and A for activity a.

After the validator computed the values R and A,
it can verify whether A satisfies R, as shown in Fig-
ure 2. For Use Case 1, verification of satisfaction
is performed using a validating XML parser. For the
other use cases, semantic reasoning is required. This
will be explained in the next section.

6 Semantic Reasoning for Validation

All of the algorithms presented in the previous sec-
tion require that some properties (type, legal restric-
tions etc.) of multiple entities to be compared. An
exact match of types is inadequate for validation of
an experiment, as illustrated in the examples below,
and so semantic reasoning allows our architecture to
take full advantage of the relationship between types
encoded in ontologies. In this section, we illustrate
some of the reasoning that can be employed by our
validation architecture, with examples taken from a
bioinformatics application in which we have tested a
implementation of our architecture (see Section 7).

6.1 Validation by Generalisation

The simplest and most commonly required form of
reasoning is to compare two types where one is a
super-class of the other. For example, in Use Case
4, a plan is defined using high-level concepts to de-
scribe the operations to be performed at each stage
of the experiment. For example, in the experiment
plan for our sample bioinformatics application, one
of the steps requires a Compression algorithm. The
provenance records that a PPMZ algorithm was used
in the experiment and, in the ontology, PPMZ algo-
rithm is defined as a sub-class of Compression algo-
rithm. Therefore, the semantic validator can verify
that this operation conforms to the one in the original
plan.

6.2 Validation of Inter-Parameter Constraints

The same experiment provides cases for more novel
forms of semantic description and reasoning in val-
idation. One service, gcode, in our bioinformatics
workflow takes two parameters: a sequence and a
grouping alphabet. The sequence, which may repre-
sent either an amino acid sequence or a nucleotide
sequence, is encoded as a sequence of symbols. The
grouping alphabet specifies a set of non-overlapping
groups of symbols, each group having a symbolic
name. Service gcode replaces each symbol in the in-
put sequence with the name of the group to which
it belongs, so that the output of the service is a se-
quence of group names of the same length as the
original sequence.

In order for the workflow to be semantically valid,
the symbols used in the input sequence of gcode
must have the same meaning as those making up
groups in the grouping alphabet. That is, if the
grouping alphabet specifies groups of nucleotides
(A, G, C and T/U) then the input sequence should
be a nucleotide sequence, and if the alphabet speci-
fies groups of amino acids (A, B, C, D, E...) then the
input sequence should be an amino acid sequence.

The ontology contains the concepts Sequence and
GroupingAlphabet both of which are parameterised
on the types of their elements, which can be either
Nucleotides and Amino Acids. In the registry, the
gcode service is annotated with metadata defining
the semantic types of its input parameters. We wish
to advertise the fact that the arguments used as in-
put parameters to this service must have correspond-
ing BaseTypes: if the sequence is made up of amino
acids, the alphabet should also be. That is, one is
a Sequence with property hasElementType with tar-
get X, the other is a GroupingAlphabet with prop-
erty hasLetterType with target Y and X is equal to
Y. Because X and Y effectively denote variables to
be instantiated in different ways in different experi-

ments, it is impossible to express this constraint with
OWL alone. Instead we can use technologies such as
the Semantic Web Rule Language [9] or role-value
maps [13], with which we can express that the value
of one concept’s property (X) must be equal to the
value of another concept’s property (Y) without giv-
ing the type of those values.

The input sequence and the grouping alphabet are
provided to gcode by two other actors, and these in-
teractions are recorded in a provenance store. From
the provenance data, the element type of the input
sequence and the letter type of the grouping alpha-
bet in a particular experiment can be determined.

7 Evaluation

In this section, we present our evaluation of the val-
idation framework in satisfying two of the use cases
(Use Case 2 and Use Case 4) in a sample bioin-
formatics experiment. The experiment analyses the
compressibility of proteins and was developed by
Klaus-Peter Zauner and Stefan Artmann. Proteins
are amino acid chains that fold into unique 3D struc-
tures. This 3D shape of the protein determines its
function. The structure of protein sequences is of
considerable interest for predicting which sections
of the DNA encode for proteins and for predicting
and designing the 3D-shape of proteins. For com-
parative studies of the structure present in an amino
acid, it is useful to determine their compressibil-
ity. This is because compression exploits context-
dependent correlations within a sequence. The frac-
tion of its original length to which a sequence can be
losslessly compressed is an indication of the struc-
ture present in the sequence.

For the evaluation, we ran the protein compress-
ibility experiment multiple times and recorded the
executions in the provenance store. Both the prove-
nance store and the registry were implemented as
Web Services (and both are available for down-
load at pasoca.org and grimoires.org re-
spectively). The semantic validation component was
implemented in Java and used Jena 2.1 for reasoning
over the ontology. The ontology itself was speci-
fied in OWL and based on the ontology developed
by myGrid.

After a set of workflow runs, each analysing one
sample, the provenance store contains records of in-
teractions between services. Each interaction record
contains the invocation message that occurred in the
workflow, which specifies the operation invoked and
data exchanged as arguments. In addition to the mes-
sage itself, the services record data links that spec-
ify when the output of one service has been used as
the input of another service. Collectively, the data
links describe the data flow throughout the experi-

600

T T
Interaction validation —&—
Plan validation -----

500

400

300 2
"
x
N ol
o= ot
200 raﬁangar o
%

100

Time (second)

2
o
x
X
0

o
xx’xxxx

s
o
o
XX

0 10 20 30 40 50 60
Number of experiments

Figure 7: Evaluation of interaction validity and con-
formance to plan for an increasing number of exper-
iments

ment. The full provenance data for one workflow
run was approximately 1 MB in size.

For the evaluation, we deployed the registry on
a Windows XP PC with Pentium 4 CPU, 3 GHz, 2
GB RAM, and the provenance store and semantic
validator on another Windows XP PC with Pentium
4 CPU, 1.5 GHz, 2 GB RAM. The PCs were con-
nected on a 100Mb ethernet network. The results of
each experiment is described in further detail below.

Two forms of validation were implemented, corre-
sponding to Use Cases 2 and 4, implementing the al-
gorithms in Figures 5 and 6 respectively. Given that
we intend large numbers of experiments to be per-
formed, it is critical that our approach scales well as
the amount of data in the provenance store expands.
Figure 7 shows the performance of the semantic vali-
dation architecture as the number of experiments for
which provenance documentation is recorded and
are to be validated increases. It can be seen that the
time required for validation increases linearly with
respect to the number of experiments. Therefore, the
proposed validation architecture is suitable for large
scaled deployments.

8 Conclusions

Grid based e-Science experiments typically involve
multiple heterogeneous computing resources across
a large, open and distributed network. As the com-
plexity of experiments grows, determining whether
results produced are meaningful becomes an in-
creasingly difficult task. In this paper, we studied
the problem of validation on such experiments. Tra-
ditionally, program validation is carried out either
statically or at run-time. However, the usefulness of
either approach is limited for large scale e-Science
experiments. Static analyses rely on the availability
of workflow scripts. These scripts may not be ex-

pressed in languages that analysis tools operate on,
or may not be available because they are exposed as
web services. Run-time service-based error check-
ing is service dependent and users may not have con-
trol over its configuration.

We propose an alternative, provenance-based ap-
proach to experiment validation. The provenance of
an experiment documents the complete process that
led to the results. As a result, validation is not reliant
on the availability of workflow scripts or service
configurations. Moreover, as science progresses,
criteria for validation evolve. Using a provenance-
based approach, the validation process can be re-
peated without re-running the experiment.

By employing technologies for provenance
recording, annotation of service descriptions and se-
mantic reasoning, we have produced an effective so-
lution to the validation problem. Algorithms work-
ing over the automatically recorded documentation
of experiments and utilising the semantic descrip-
tions of experimental services in registries can test
the validity of results to satisfy various domain-
independent and domain-specific use cases.

The myGrid and CombeChem (combechem.
org) projects have also worked on the problems of
provenance recording and service description, and
adopted RDF-based approaches, making ontology-
based reasoning a possibility. However, neither
identify the architectural elements required for val-
idation or provide a generic, domain-independent
way to satisfy use cases such as those presented in
this paper.

To demonstrate the viability of our semantic vali-
dation architecture, we have discussed how it can be
used with various algorithms and forms of semantic
reasoning to satisfy five use cases. We have also im-
plemented two of the use cases. Performance tests
show our algorithms scale as the amount of prove-
nance documentation recorded increases.

9 Acknowledgements

This research is funded in part by the Grimoires
(EPSRC Grant GR/S90843/01), myGrid (EPSRC
Grant GR/R67743/01) and PASOA (EPSRC Grant
GR/S67623/01) projects. The authors would also
like to thank Klaus-Peter Zauner and Stefan Art-
mann for providing us with the bioinformatics ex-
periment.

References

[1] Luciano Baresi, Andrea Maurino, and Stefano
Modafferi. Workflow partitioning in mobile
information systems. In Proceedings of IFIP

[7]

[10]

TC8 Working Conference on Mobile Informa-
tion Systems (MOBIS 2004), pages 93-106,
Oslo, Norway, September 2004. Springer.

Jim Blythe, Ewa Deelman, and Yolanda Gil.
Planning for workflow construction and main-
tenance on the grid. In ICAPS 2003 workshop
on planning for web services, 2003.

Erik Christensen, Francisco Curbera, Greg
Meredith, and Sanjiva Weerawarana. Web ser-
vices description language (WSDL) 1.1. Tech-
nical report, W3C Note, http://www.w3.
org/TR/wsdl, March 2001.

The Gene Ontology Consortium. The Gene
Ontology (GO) database and informatics re-
source. Nucleic Acids Research, 32:258-261,
2004.

Rik Eshuis and Roel Wieringa. Verification
support for workflow design with uml activ-
ity graphs. In Proceedings of the 24th Inter-
national Conference on Software Engineering,
pages 166-176, 2002.

David C. Fallside and Priscilla Walms-
ley. XML schema part 0: Primer sec-
ond edition. Technical report, W3C Rec-
ommendation, http://www.w3.0rg/TR/
xmlschema—-0, October 2004.

Tan Foster, Carl Kesselman, and Steven
Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. [International
Journal of High Performance Computing Ap-
plications, 15(3):200-222, 2001.

Yolanda Gil, Ewa Deelman, Jim Blythe,
Kesselman, and Hongsuda Tangmunarunkit.
Artificial intelligence and grids: workflow
planning and beyond. IEEE Intelligent Sys-
tems, 19(1):26-33, 2004.

Ian Horrocks, Peter F. Patel-Schneider, Harold
Boley, Said Tabet, Benjamin Grosof, and Mike
Dean. SWRL: A semantic web rule lan-
guage combining OWL and RULEML. Tech-
nical report, DARPA Agent Markup Language
(DAML) Program, http://www.daml.
org/2003/11/swrl/, November 2003.

Minkyu Lee, Dongsoo Han, and Jaeyong Shim.
Set-based access conflicts analysis of concur-
rent workflow definition. In Proceedings of
Third International Symposium on Coopera-
tive Database Systems and Applications, pages
189-196, Beijing, China, April 2001.

[11]

[12]

[13]

[14]

David Martin, Mark Burstein, Jerry Hobbs,
Ora Lassila, Drew McDermott, Sheila Mcll-
raith, Srini Narayanan, Massimo Paolucci, Bi-
jan Parsia, Terry Payne, Evren Sirin, Naveen
Srinivasan, and Katia Sycara. OWL-S: Seman-
tic markup for web services. Technical report,
W3C Member Submission, http://www.
w3.0rg/Submission/OWL-S, November
2004.

Simon Miles, Juri Papay, Michael Luck, and
Luc Moreau. Towards a protocol for the at-
tachment of metadata to grid service descrip-
tions and its use in semantic discovery. Scien-
tific Programming, 12(4):201-211, 2004.

M. Schmidt-Schauss. Subsumption in KL-
ONE is undecidable. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Pro-
ceedings of the Ist International Conference
on the Principles of Knowledge Representation
and Reasoning (KR89), pages 421-431. Mor-
gan Kaufmann, 1989.

Andrzej Uszok, Jeffrey M. Bradshaw, and Re-
nia Jeffers. KAOS: A policy and domain ser-
vices framework for grid computing and se-
mantic web services. In C. Jensen, S. Poslad,
and T. Dimitrakos, editors, Trust Management:
Second International Conference (iTrust 2004)
Proceedings, volume 2995 of Lecture Notes in
Computer Science, pages 16-26, Oxford, UK,
March 2004. Springer.

Chris Wroe, Carole Goble, Mark Greenwood,
Phillip Lord, Simon Miles, Juri Papay, Terry
Payne, and Luc Moreau. Automating experi-
ments using semantic data on a bioinformatics
grid. IEEE Intelligent Systems, 19(1):48-55,
2004.

Chris Wroe, Robert Stevens, Carole Goble,
Angus Roberts, and Mark Greenwood. A suite
of DAML+OIL ontologies to describe bioin-
formatics web services and data. nternational
Journal of Cooperative Information Systems,
12(2):197-224, June 2003.

Lin Yang, Alan Bundy, Dave Berry, and Su-
san Huczynska. Inferring quality of service
properties for grid applications. In CS poster,
EPSRC e-Science Meeting, Edinburgh, UK,
March 2004. NeSC. static analysis of work-
flows.

